Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Physics: General
Published Giant viruses found on Greenland ice sheet



Giant viruses found on the Greenland ice sheet probably regulate the growth of snow algae on the ice by infecting them. Knowing how to control these viruses could help us reduce the rate of ice-melt.
Published Towards next-gen functional materials: direct observation of electron transfer in solids



Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.
Published Observing ultrafast photoinduced dynamics in a halogen-bonded supramolecular system



Researchers uncover how the halogen bond can be exploited to direct sequential dynamics in the multi-functional crystals, offering crucial insights for developing ultrafast-response times for multilevel optical storage.
Published Shining a light on molecules: L-shaped metamaterials can control light direction



Polarized light waves spin clockwise or counterclockwise as they travel, with one direction behaving differently than the other as it interacts with molecules. This directionality, called chirality or handedness, could provide a way to identify and sort specific molecules for use in biomedicine applications, but researchers have had limited control over the direction of the waves -- until now.
Published The embryo assembles itself



Biological processes depend on puzzle pieces coming together and interacting. Under specific conditions, these interactions can create something new without external input. This is called self-organization, as seen in a school of fish or a flock of birds. Interestingly, the mammalian embryo develops similarly. Scientists now introduce a mathematical framework that analyzes self-organization from a single cell to a multicellular organism.
Published Scientists develop 'x-ray vision' technique to see inside crystals



A team of researchers has created a new way to visualize crystals by peering inside their structures, akin to having X-ray vision. Their new technique -- which they aptly named 'Crystal Clear' -- combines the use of transparent particles and microscopes with lasers that allow scientists to see each unit that makes up the crystal and to create dynamic three-dimensional models.
Published Groundbreaking progress in quantum physics: How quantum field theories decay and fission



An international research team has sparked interest in the scientific community with results in quantum physics. In their current study, the researchers reinterpret the Higgs mechanism, which gives elementary particles mass and triggers phase transitions, using the concept of 'magnetic quivers.'
Published Understanding the atomic density fluctuations in silica glass



The intermediate range order of covalent glasses has been extensively studied in terms of the first sharp diffraction peak (FSDP), but the direct observation of the atomic density fluctuations that give rise to FSDP is still lacking. Addressing this gap, researchers employed a new energy-filtered angstrom-beam electron diffraction technique to provide the direct experimental observation for the origin of FSDP in silica glass, providing important insights into the atomic structure of glasses.
Published The coldest lab in New York has new quantum offering



Physicists describe the successful creation of a molecular Bose-Einstein condensate (BEC). Made up of dipolar sodium-cesium molecules that were cooled with the help of microwave shielding to just 5 nanoKelvin and lasted for up to two seconds, the new molecular BEC will help scientists explore a number of different quantum phenomena, including new types of superfluidity, and enable the creation of quantum simulators to ecreate the enigmatic properties of complex materials, like solid crystals.
Published Researchers discover 'trojan horse' virus hiding in human parasite



An international team has found a new RNA virus that they believe is hitching a ride with a common human parasite. The virus is associated with severe inflammation in humans infected with the parasite Toxoplasma gondii, leading the team to hypothesize that it exacerbates toxoplasmosis disease.
Published Trout in mine-polluted rivers are genetically 'isolated'



Trout living in rivers polluted by metal from old mines across the British Isles are genetically 'isolated' from other trout, new research shows.
Published Scientists develop most sensitive way to observe single molecules



A technical achievement marks a significant advance in the burgeoning field of observing individual molecules without the aid of fluorescent labels. While these labels are useful in many applications, they alter molecules in ways that can obscure how they naturally interact with one another. The new label-free method makes the molecules so easy to detect, it is almost as if they had labels.
Published New, modified CRISPR protein can fit inside virus used for gene therapy



Researchers have developed a novel version of a key CRISPR gene-editing protein that shows efficient editing activity and is small enough to be packaged within a non-pathogenic virus that can deliver it to target cells.
Published Combining simulations and experiments to get the best out of Fe3Al



Researchers combined computer simulations and transmission electron microscopy experiments to better understand the ordering mobility and formation of microstructure domains in Fe3Al alloy. They were able to correlate structural changes with heat treatment to understand how particular mechanical behavior can be achieved. This is expected to allow the superelastic properties of Fe3Al to harnessed for the 3D printing of construction materials for absorbing seismic activity.
Published The thinnest lens on Earth, enabled by excitons



Lenses are used to bend and focus light. Normal lenses rely on their curved shape to achieve this effect, but physicists have made a flat lens of only three atoms thick which relies on quantum effects. This type of lens could be used in future augmented reality glasses.
Published Researchers expose new symbiosis origin theories, identify experimental systems for plant life



Research work on symbiosis -- a mutually beneficial relationship between living organisms -- is pushing back against the newer theory of a 'single-origin' of root nodule symbiosis (RNS) -- that all symbiosis between plant root nodules and nitrogen-fixing bacteria stems from one point--instead suggesting a 'multiple-origin' theory of sybiosis which opens a better understanding for genetically engineering crops.
Published Researchers apply quantum computing methods to protein structure prediction



Researchers recently published findings that could lay the groundwork for applying quantum computing methods to protein structure prediction.
Published Theoretical quantum speedup with the quantum approximate optimization algorithm



Researchers demonstrated a quantum algorithmic speedup with the quantum approximate optimization algorithm, laying the groundwork for advancements in telecommunications, financial modeling, materials science and more.
Published hnRNPM, a guardian of the integrity of cellular protein production



Researchers have discovered that the protein hnRNPM prevents the cell from making mistakes while it is producing new proteins, which helps maintain the integrity of this vital process.
Published Editing without 'cutting': Molecular mechanisms of new gene-editing tool revealed



New research has determined the spatial structure of various processes of a novel gene-editing tool called 'prime editor.' Functional analysis based on these structures also revealed how a 'prime editor' could achieve reverse transcription, synthesizing DNA from RNA, without 'cutting' both strands of the double helix. Clarifying these molecular mechanisms contributes greatly to designing gene-editing tools accurate enough for gene therapy treatments.