Showing 20 articles starting at article 641

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Physics: General

Return to the site home page

Chemistry: Biochemistry Chemistry: General Physics: General
Published

Better neutron mirrors can reveal the inner secrets of matter      (via sciencedaily.com)     Original source 

Improved neutron mirrors can increase the efficiency of material analysis in neutron sources such as the ESS. The improved mirror has been developed by coating a silicon plate with extremely thin layers of iron and silicon mixed with boron carbide.

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

When the music changes, so does the dance: Controlling cooperative electronic states in Kagome metals      (via sciencedaily.com)     Original source 

Playing a different sound track is, physically speaking, only a minute change of the vibration spectrum, yet its impact on a dance floor is dramatic. People long for this tiny trigger, and as a salsa changes to a tango completely different collective patterns emerge. For such a tiny stimulus to have an effect, the crowd needs to know more than just one dance. Electrons in metals tend to show only one behavior at zero temperature, when all kinetic energy is quenched.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New tool helps decipher gene behavior      (via sciencedaily.com)     Original source 

Scientists have extensively researched the structure and sequence of genetic material and its interactions with proteins in the hope of understanding how our genetics and environment interact in diseases. This research has partly focused on 'epigenetic marks', which are chemical modifications to DNA, RNA, and the associated proteins (known as histones).

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

Under pressure: New tool for precise measurement of superconductors      (via sciencedaily.com)     Original source 

Researchers think they have a foundational tool for the thorny problem of how to measure and image the behavior of hydride superconductors at high pressure. They report creatively integrating quantum sensors into a diamond anvil cell, enabling direct readouts of the pressurized material's electrical and magnetic properties.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Radio waves can tune up bacteria to become life-saving medicines      (via sciencedaily.com)     Original source 

Scientists have found a new way to alter the DNA of bacterial cells -- a process used to make many vital medicines including insulin -- much more efficiently than standard industry techniques.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Optics
Published

Researchers develop novel method to photosynthesize hydrogen peroxide using water and air      (via sciencedaily.com)     Original source 

Researchers have developed a microporous covalent organic framework with dense donor-acceptor lattices and engineered linkages for the efficient and clean production of hydrogen peroxide through the photosynthesis process with water and air.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Light stimulates a new twist for synthetic chemistry      (via sciencedaily.com)     Original source 

Molecules that are induced by light to rotate bulky groups around central bonds could be developed into photo-activated bioactive systems, molecular switches, and more.

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum films on plastic      (via sciencedaily.com)     Original source 

Researchers have discovered that thin films of elemental bismuth exhibit the so-called non-linear Hall effect, which could be applied in technologies for the controlled use of terahertz high-frequency signals on electronic chips. Bismuth combines several advantageous properties not found in other systems to date, as the team reports. Particularly: the quantum effect is observed at room temperature. The thin-layer films can be applied even on plastic substrates and could therefore be suitable for modern high-frequency technology applications.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Nanocarrier with escape reflex      (via sciencedaily.com)     Original source 

Protein-based drugs must be transported into cells in a way that prevents their immediate degradation. A new approach is intended to ensure that they remain intact only in certain cells, such as cancer cells. A Japanese research team has introduced a nanocarrier that can 'escape' from endosomes before its cargo is destroyed there. This ability to escape is only triggered within the endosomes of certain tumor cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New disease testing component facilitates lower-cost diagnostics      (via sciencedaily.com)     Original source 

Biomedical researchers have developed a new, less expensive way to detect nuclease digestion -- one of the critical steps in many nucleic acid sensing applications, such as those used to identify COVID-19 and other infectious diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Geoscience: Environmental Issues
Published

First DNA study of ancient Eastern Arabians reveals malaria adaptation      (via sciencedaily.com)     Original source 

People living in ancient Eastern Arabia appear to have developed resistance to malaria following the appearance of agriculture in the region around five thousand years ago.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Diamonds are a chip's best friend      (via sciencedaily.com)     Original source 

New technologies aim to produce high-purity synthetic crystals that become excellent semiconductors when doped with impurities as electron donors or acceptors of other elements. Researchers have now determined the magnitude of the spin-orbit interaction in acceptor-bound excitons in a semiconductor. They broke through the energy resolution limit of conventional luminescence measurements by directly observing the fine structure of bound excitons in boron-doped blue diamond, using optical absorption.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New discovery shows how cells defend themselves during stressful situations      (via sciencedaily.com)     Original source 

A recent study has unveiled an exciting discovery about how our cells defend themselves during stressful situations. The research shows that a tiny modification in the genetic material, called ac4C, acts as a crucial defender, helping cells create protective storage units known as stress granules. These stress granules safeguard important genetic instructions when the cell is facing challenges. The new findings could help shed light on relevant molecular pathways that could be targeted in disease.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Trapping and excitation of the simplest molecule      (via sciencedaily.com)     Original source 

The simplest possible molecule H2+ was one of the very first molecules to form in the cosmos. This makes it significant for astrophysics, but also an important object of research for fundamental physics. It is difficult to study in experiments. However, a team of physicists has now succeeded in measuring the vibrations of the molecule with a laser.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Physics: General
Published

Researchers use Hawk supercomputer and lean into imperfection to improve solar cell efficiency      (via sciencedaily.com)     Original source 

Solar energy is one of the most promising, widely adopted renewable energy sources, but the solar cells that convert light into electricity remains a challenge. Scientists have turned to the High-Performance Computing Center Stuttgart to understand how strategically designing imperfections in the system could lead to more efficient energy conversion.

Physics: General Physics: Optics
Published

Movies of ultrafast electronic circuitry in space and time      (via sciencedaily.com)     Original source 

Researchers have successfully filmed the operations of extremely fast electronic circuitry in an electron microscope at a bandwidth of tens of terahertz.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

Human stem cells coaxed to mimic the very early central nervous system      (via sciencedaily.com)     Original source 

The first stem cell culture method that produces a full model of the early stages of the human central nervous system has been developed by a team of engineers and biologists.