Showing 20 articles starting at article 701
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Physics: General
Published A star like a Matryoshka doll: New theory for gravastars



If gravitational condensate stars (or gravastars) actually existed, they would look similar to black holes to a distant observer. Two theoretical physicists have now found a new solution to Albert Einstein's theory of general relativity, according to which gravitational stars could be structured like a Russian matryoshka doll, with one gravastar located inside another.
Published Ancient retroviruses played a key role in the evolution of vertebrate brains



Researchers report that ancient viruses may be to thank for myelin -- and, by extension, our large, complex brains. The team found that a retrovirus-derived genetic element or 'retrotransposon' is essential for myelin production in mammals, amphibians, and fish. The gene sequence, which they dubbed 'RetroMyelin,' is likely a result of ancient viral infection, and comparisons of RetroMyelin in mammals, amphibians, and fish suggest that retroviral infection and genome-invasion events occurred separately in each of these groups.
Published Team creates novel rabies viral vectors for neural circuit mapping



A research team has created 20 new recombinant rabies viral vectors for neural circuit mapping that offer a range of significant advantages over existing tools, including the ability to detect microstructural changes in models of aging and Alzheimer's disease brain neurons.
Published Key genes linked to DNA damage and human disease uncovered



Scientists unveil 145 genes vital for genome health, and possible strategies to curb progression of human genomic disorders.
Published Researchers uncover mechanisms behind enigmatic shapes of nuclei



White blood cells known as neutrophils feature a nucleus that is structured strikingly different than most nuclei. These unique shapes permit neutrophils to travel all over the body to combat invading pathogens. Scientists have now deciphered the shapeshifting puzzle of the neutrophil nucleus.
Published Microscopy: Overcoming the traditional resolution limit for the fast co-tracking of molecules



Researchers have developed an innovative method to simultaneously track rapid dynamic processes of multiple molecules at the molecular scale.
Published Pesticides to help protect seeds can adversely affect earthworms' health



While pesticides protect crops from hungry animals, pesky insects, or even microbial infections, they also impact other vital organisms, including bees and earthworms. And today, research reveals that worms are affected by the relatively small amounts of chemicals that can leach out of pesticide-treated seeds. Exposure to nonlethal amounts of these insecticides and fungicides resulted in poor weight gain and mitochondrial DNA (mtDNA) damage in the worms.
Published Fundamental equation for superconducting quantum bits revised



Physicists have uncovered that Josephson tunnel junctions -- the fundamental building blocks of superconducting quantum computers -- are more complex than previously thought. Just like overtones in a musical instrument, harmonics are superimposed on the fundamental mode. As a consequence, corrections may lead to quantum bits that are 2 to 7 times more stable. The researchers support their findings with experimental evidence from multiple laboratories across the globe.
Published Female lab mice behave very differently when placed outdoors



A new study has examined social behavior of lab mice in large outdoor enclosures.
Published By growing animal cells in rice grains, scientists dish up hybrid food



From lab-grown chicken to cricket-derived protein, these innovative alternatives offer hope for a planet struggling with the environmental and ethical impacts of industrial agriculture. Now, scientists add a new recipe to the list -- cultured beef rice -- by growing animal muscle and fat cells inside rice grains. The method results in a nutritious and flavorful hybrid food that, once commercialized, could offer a more affordable protein alternative with a smaller carbon footprint.
Published Altermagnetism proves its place on the magnetic family tree



There is now a new addition to the magnetic family: researchers have demonstrated the existence of altermagnetism. The experimental discovery of this new branch of magnetism signifies new fundamental physics, with major implications for spintronics.
Published A 'quantum leap' at room temperature



Scientists have achieved a milestone by controlling quantum phenomena at room temperature.
Published CRISPR-copies: New tool accelerates and optimizes genome editing



Researchers are further improving CRISPR's versatility to engineer new grasses and yeasts for biochemical production.
Published Astronomy observation instrument used to uncover internal structure of atomic nuclei



Researchers have used equipment originally intended for astronomy observation to capture transformations in the nuclear structure of atomic nuclei, reports a new study.
Published Greetings from the island of enhanced stability: The quest for the limit of the periodic table



Since the turn of the century, six new chemical elements have been discovered and subsequently added to the periodic table of elements, the very icon of chemistry. These new elements have high atomic numbers up to 118 and are significantly heavier than uranium, the element with the highest atomic number (92) found in larger quantities on Earth. This raises questions such as how many more of these superheavy species are waiting to be discovered, where -- if at all -- is a fundamental limit in the creation of these elements, and what are the characteristics of the so-called island of enhanced stability. In a recent review, experts in theoretical and experimental chemistry and physics of the heaviest elements and their nuclei summarize the major challenges and offer a fresh view on new superheavy elements and the limit of the periodic table.
Published Scientists study the behaviors of chiral skyrmions in chiral flower-like obstacles



Chiral skyrmions are a special type of spin textures in magnetic materials with asymmetric exchange interactions. They can be treated as quasi-particles and carry integer topological charges. Scientists have recently studied the random walk-behaviors of chiral skyrmions by simulating their dynamics within a ferromagnetic layer surrounded by chiral flower-like obstacles. The simulations reveal that the system behaves like a topological sorting device, indicating its use in information processing and computing devices.
Published Low-cost microbe can speed biological discovery



Researchers have created a new version of a microbe to compete economically with E. coli -- a bacteria commonly used as a research tool due to its ability to synthesize proteins -- to conduct low-cost and scalable synthetic biological experiments.
Published New trial highlights incremental progress towards a cure for HIV-1



A new clinical trial suggests that a combination of the drug vorinostat and immunotherapy can coax HIV-infected cells out of latency and attack them. The findings highlight how close -- yet still far -- researchers have come to developing a cure for HIV-1.
Published Sandalwood oil by-product prevents prostate cancer development in mice



Sandalwood oil has been used worldwide for centuries. Now, a study is the first to demonstrate in vivo the chemo-preventive properties of a by-product of the oil in a mouse model. Results show administering alpha-santalol reduced visible prostate tumors, protected the normal tissue, and delayed progression from a precancerous condition to a high-grade form of cancer. These findings are significant because mortality in prostate cancer patients is mainly attributable to advanced stages of the disease.
Published Nutrients direct intestinal stem cell function and affect aging



The capacity of intestinal stem cells to maintain cellular balance in the gut decreases upon aging. Researchers have discovered a new mechanism of action between the nutrient adaptation of intestinal stem cells and aging. The finding may make a difference when seeking ways to maintain the functional capacity of the aging gut.