Showing 20 articles starting at article 761

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Physics: General

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Environmental: General Geoscience: Geochemistry
Published

How seahorse-like toxins kill insects      (via sciencedaily.com)     Original source 

Insect-killing bacteria typically release toxins to slay their hosts. The bacterium Photorhabdus luminescens, for example, pumps insect larvae full of the lethal 'Makes caterpillars floppy 1' (Mcf1) toxin, leading them to first become droopy and then dead. However, it has so far been a mystery how Mcf1 unfolds its devastating effect. Researchers successfully used cryo-electron microscopy (cryo-EM) and biochemical assays to characterize the first-ever Mcf1 structure, allowing them to propose a molecular mechanism of the toxin's action. Understanding how bacterial toxins perform their deadly task in such detail is very useful for engineering novel biopesticides, thereby reducing the use of barely specific chemical agents with harmful side effects for the ecosystem.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Engineering viruses to kill deadly pathogens      (via sciencedaily.com)     Original source 

Antimicrobial resistance is an urgent and growing global crisis. Researchers are exploring phages, viruses that infect bacteria, as a possible solution. In the new study, researchers successfully modified DNA from four types of phages to kill a deadly pathogen. The process can also be used to produce more phage variants for further exploration.

Physics: General Physics: Optics
Published

Researchers discover new ways to excite spin waves with extreme infrared light      (via sciencedaily.com)     Original source 

Researchers have developed a pioneering method to precisely manipulate ultrafast spin waves in antiferromagnetic materials using tailored light pulses.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Using computers to design proteins allows researchers to make tunable hydrogels that can form both inside and outside of cells      (via sciencedaily.com)     Original source 

New research demonstrates a new class of hydrogels that can form not just outside cells, but also inside of them. These hydrogels exhibited similar mechanical properties both inside and outside of cells, providing researchers with a new tool to group proteins together inside of cells.

Computer Science: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers craft new way to make high-temperature superconductors -- with a twist      (via sciencedaily.com)     Original source 

An international team has developed a new method to make and manipulate a widely studied class of high-temperature superconductors. This technique should pave the way for the creation of unusual forms of superconductivity in previously unattainable materials.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Superfluids could share characteristic with common fluids      (via sciencedaily.com)     Original source 

Every fluid -- from Earth's atmosphere to blood pumping through the human body -- has viscosity, a quantifiable characteristic describing how the fluid will deform when it encounters some other matter. If the viscosity is higher, the fluid flows calmly, a state known as laminar. If the viscosity decreases, the fluid undergoes the transition from laminar to turbulent flow. The degree of laminar or turbulent flow is referred to as the Reynolds number, which is inversely proportional to the viscosity. However, this Reynolds similitude does not apply to quantum superfluids. A researcher has theorized a way to examine the Reynolds similitude in superfluids, which could demonstrate the existence of quantum viscosity in superfluids.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: General
Published

Asparagus and orchids are more similar than you think      (via sciencedaily.com)     Original source 

How is a beech leaf constructed? What determines the appearance of an asparagus? A new 'encyclopaedia' helps us learn more about the building blocks of plants. The encyclopaedia, probably the largest of its kind, could be used to improve targeted plant breeding efforts, to make them both more climate-resilient and more easily digestible.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing
Published

Small yet mighty: Showcasing precision nanocluster formation with molecular traps      (via sciencedaily.com)     Original source 

Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

'Genomic time machine' reveals secrets of our DNA      (via sciencedaily.com)     Original source 

Researchers reveal a novel method to uncover bits of our genetic blueprint that come from ancient genetic parasites, offering fresh insights into human evolution and health.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists pull off quantum coup      (via sciencedaily.com)     Original source 

Scientists have discovered a first-of-its-kind material, a 3D crystalline metal in which quantum correlations and the geometry of the crystal structure combine to frustrate the movement of electrons and lock them in place.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Biology: Zoology
Published

A non-allergenic wheat protein for growing better cultivated meat      (via sciencedaily.com)     Original source 

As the world's population increases, cultivated or lab-grown meat -- animal muscle and fat cells grown in laboratory conditions -- has emerged as a potential way to satisfy future protein needs. And edible, inexpensive plant proteins could be used to grow these cell cultures. Now, researchers report that the non-allergenic wheat protein glutenin successfully grew striated muscle layers and flat fat layers, which could be combined to produce meat-like textures.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Physics: General
Published

Utilizing active microparticles for artificial intelligence      (via sciencedaily.com)     Original source 

Artificial intelligence using neural networks performs calculations digitally with the help of microelectronic chips. Physicists have now created a type of neural network that works not with electricity but with so-called active colloidal particles.The researchers describe how these microparticles can be used as a physical system for artificial intelligence and the prediction of time series.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology Ecology: Sea Life
Published

Researchers map genome for cats, dolphins, birds, and dozens of other animals      (via sciencedaily.com)     Original source 

Researchers mapped genetic blueprints for 51 species including cats, dolphins, kangaroos, penguins, sharks, and turtles, a discovery that deepens our understanding of evolution and the links between humans and animals. The researchers developed novel algorithms and computer software that cut the sequencing time from months -- or decades in the case of the human genome -- to a matter of days.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How macrophages regulate regenerative healing in spiny mice      (via sciencedaily.com)     Original source 

A team of researchers is delving deeper into the science behind how spiny mice can regenerate lost tissue and using what they learn to trigger regeneration in other types of mice -- advances which one day may be translated into humans. Whereas adult laboratory mice heal injuries with scar tissue, spiny mice have the unique ability to regrow lost skin and regenerate musculoskeletal tissues in their body.

Chemistry: Inorganic Chemistry Mathematics: General Mathematics: Modeling Physics: General
Published

New method flips the script on topological physics      (via sciencedaily.com)     Original source 

The branch of mathematics known as topology has become a cornerstone of modern physics thanks to the remarkable -- and above all reliable -- properties it can impart to a material or system. Unfortunately, identifying topological systems, or even designing new ones, is generally a tedious process that requires exactly matching the physical system to a mathematical model. Researchers have demonstrated a model-free method for identifying topology, enabling the discovery of new topological materials using a purely experimental approach.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Batteries Energy: Nuclear Energy: Technology Physics: General
Published

Liquid lithium on the walls of a fusion device helps the plasma within maintain a hot edge      (via sciencedaily.com)     Original source 

Emerging research suggests it may be easier to use fusion as a power source if liquid lithium is applied to the internal walls of the device housing the plasma. Past experiments studied solid lithium coatings and found they could enhance a plasma. The researchers were pleased they could yield similar results with liquid lithium, as it's better suited for use in a large-scale tokamak.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How does HIV get into the cell's cenetr to kickstart infection?      (via sciencedaily.com)     Original source 

UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers. UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Shining a light on the hidden properties of quantum materials      (via sciencedaily.com)     Original source 

Certain materials have desirable properties that are hidden and scientists can use light to uncover these properties. Researchers have used an advanced optical technique, based on terahertz time-domain spectroscopy, to learn more about a quantum material called Ta2NiSe5 (TNS).