Showing 20 articles starting at article 81

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Physics: General

Return to the site home page

Energy: Nuclear Physics: General
Published

Researchers dig deeper into stability challenges of nuclear fusion -- with mayonnaise      (via sciencedaily.com)     Original source 

Researchers are using mayonnaise to study and address the stability challenges of nuclear fusion by examining the phases of Rayleigh-Taylor instability. Their innovative approach aims to inform the design of more stable fusion capsules, contributing to the global effort to harness clean fusion energy. Their most recent paper explores the critical transitions between elastic and plastic phases in these conditions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Zoology
Published

Researchers find gene which determines marsupial fur color      (via sciencedaily.com)     Original source 

Fur is a defining characteristic of mammals, coming in a wide variety of colors and patterns -- thanks to a world-first study, we now know which genes make a marsupial's coat black or grey.

Chemistry: Thermodynamics Physics: General
Published

Heating for fusion: Why toast plasma when you can microwave it!      (via sciencedaily.com)     Original source 

Can plasma be sufficiently heated inside a tokamak using only microwaves? New research suggests it can! Eliminating the central ohmic heating coil normally used in tokamaks will free up much-needed space for a more compact, efficient spherical tokamak.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Genetics Biology: Microbiology
Published

Study analyzes potato-pathogen 'arms race' after Irish famine      (via sciencedaily.com)     Original source 

Researchers reveal more about the tit-for-tat evolutionary changes occurring in both potato plants and the pathogen that caused the 1840s Irish potato famine.

Chemistry: Biochemistry Physics: General Physics: Quantum Physics
Published

First measurement of electron- and muon-neutrino interaction rates at the highest energy ever detected from an artificial source      (via sciencedaily.com)     Original source 

Understanding neutrino interactions is crucial for obtaining a complete picture of particle physics and the universe. To date, neutrino interaction cross sections have not been measured at high energy above some hundred gigaelectronvolts at particle colliders. Now, researchers have obtained the first direct observation of electron and muon neutrino interactions in the Teraelectronvolt range at CERN's Large Hadron Collider, using the FASER detector. This study marks a significant step for particle physics research.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Mathematics: Modeling
Published

Cracking the code of life: new AI model learns DNA's hidden language      (via sciencedaily.com)     Original source 

With GROVER, a new large language model trained on human DNA, researchers could now attempt to decode the complex information hidden in our genome. GROVER treats human DNA as a text, learning its rules and context to draw functional information about the DNA sequences.

Energy: Technology Engineering: Nanotechnology Physics: General
Published

Novel ultrafast electron microscopy technique advances understanding of processes applicable to brain-like computing      (via sciencedaily.com)     Original source 

A team developed a new microscopy technique that uses electrical pulses to track the nanosecond dynamics within a material that is known to form charge density waves. Controlling these waves may lead to faster and more energy-efficient electronics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology
Published

Allergy cells' hidden secret      (via sciencedaily.com)     Original source 

Known for their role in allergic reactions, mast cells have long been recognised as key players in our immune system. When they encounter allergens, they release chemicals that trigger typical allergy symptoms such as tissue swelling and inflammation. Now, researchers have discovered a hidden talent of mast cells: they can capture and use another type of immune cell called neutrophils. This surprising discovery sheds new light on how our immune system works, particularly during allergic reactions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Molecular Biology: Zoology
Published

Reduction in folate intake linked to healthier aging in animal models      (via sciencedaily.com)     Original source 

Scientists found that decreasing folate intake can support healthier metabolisms in aging animal models, challenging the conventional belief that high folate consumption universally benefits health.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Coinfecting viruses impede each other's ability to enter cells      (via sciencedaily.com)     Original source 

The process by which phages -- viruses that infect and replicate within bacteria -- enter cells has been studied for over 50 years. In a new study, researchers have used cutting-edge techniques to look at this process at the level of a single cell.

Physics: General Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Cold antimatter for quantum state-resolved precision measurements      (via sciencedaily.com)     Original source 

Why does the universe contain matter and (virtually) no antimatter? Scientists have achieved an experimental breakthrough in this context. It can contribute to measuring the mass and magnetic moment of antiprotons more precisely than ever before -- and thus identify possible matter-antimatter asymmetries. They have developed a trap, which can cool individual antiprotons much more rapidly than in the past.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

Circular RNAs: The new frontier in cancer research      (via sciencedaily.com)     Original source 

Unravelling the complexities of circular RNAs (circRNAs) in cancer biology has positioned scientists on the cusp of revolutionary breakthroughs in the diagnosis and treatment of cancer. A new study predicts remarkable potential for circular RNAs to improve cancer treatment and patient outcomes within the next 5-10 years.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

What gave the first molecules their stability?      (via sciencedaily.com)     Original source 

The origins of life remain a major mystery. How were complex molecules able to form and remain intact for prolonged periods without disintegrating? A team has demonstrated a mechanism that could have enabled the first RNA molecules to stabilize in the primordial soup. When two RNA strands combine, their stability and lifespan increase significantly.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Physics: General Physics: Optics
Published

Precise package delivery in cells?      (via sciencedaily.com)     Original source 

Researchers have developed new real-time microscopy technology and successfully observed the behavior of 'motor proteins', which may hold the key to unraveling the efficient material transport strategy of cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

When it comes to DNA replication, humans and baker's yeast are more alike than different      (via sciencedaily.com)     Original source 

Humans and baker's yeast have more in common than meets the eye, including an important mechanism that helps ensure DNA is copied correctly, reports a pair of studies. The findings visualize for the first time a molecular complex -- called CTF18-RFC in humans and Ctf18-RFC in yeast -- that loads a 'clamp' onto DNA to keep parts of the replication machinery from falling off the DNA strand.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Stacked up against the rest      (via sciencedaily.com)     Original source 

Scientists have hypothesized that moir excitons -- electron-hole pairs confined in moir interference fringes which overlap with slightly offset patterns -- may function as qubits in next-generation nano-semiconductors. However, due to diffraction limits, it has not been possible to focus light enough in measurements, causing optical interference from many moir excitons. To solve this, researchers have developed a new method of reducing these moir excitons to measure the quantum coherence time and realize quantum functionality.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Which strains of tuberculosis are the most infectious?      (via sciencedaily.com)     Original source 

Highly localized TB strains are less infectious in cosmopolitan cities and more likely to infect people from the geographic area that is the strain's natural habitat. The research provides the first controlled evidence that TB strains may evolve with their human hosts, adapting to be more infectious to specific populations. The findings offer new clues for tailoring preventive treatments after exposure to TB based on affinity between strains host populations.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Talking about regeneration      (via sciencedaily.com)     Original source 

Researchers transferred genes from simple organisms capable of regenerating their bodies into common fruit flies, more complex animals that cannot. They found the transferred gene suppressed an age-related intestinal issue in the flies. Their results suggest studying genes specific to animals with high regenerative capability may uncover new mechanisms for rejuvenating stem cell function and extending the healthy lifespan of unrelated organisms.