Showing 20 articles starting at article 921
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Physics: General
Published Macrophages 'eat' insulin-producing cells to regulate insulin after mice have given birth



Pregnancy brings a rise in pancreatic beta cells -- the cells that produce insulin. Shortly after birth, these cells return to their normal levels. The mechanisms behind this process had remained a mystery. But now a research group has revealed that white blood cells called macrophages 'eat' these cells.
Published New theory unites Einstein's gravity with quantum mechanics



The prevailing assumption has been that Einstein's theory of gravity must be modified, or 'quantized', in order to fit within quantum theory. This is the approach of two leading candidates for a quantum theory of gravity, string theory and loop quantum gravity. But a new theory challenges that consensus and takes an alternative approach by suggesting that spacetime may be classical -- that is, not governed by quantum theory at all.
Published Quantum physics: Superconducting Nanowires Detect Single Protein Ions



An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.
Published Engineers tackle hard-to-map class of materials



Materials scientists mapped the structural features of a 2D ferroelectric material made of tin and selenium atoms using a new technique that can be applied to other 2D van der Waals ferroelectrics, unlocking their potential for use in electronics and other applications.
Published More than 100 'magic mushroom' genomes point the way to new cultivars



Scientists have amassed genome data for dozens of 'magic mushroom' isolates and cultivars, with the goal to learn more about how their domestication and cultivation has changed them. The findings may point the way to the production of intriguing new cultivars, say the researchers.
Published Researchers have cracked the cellular code on protein folding, offering hope for new therapeutic avenues for many diseases



While we often think of diseases as caused by foreign bodies -- bacteria or viruses -- there are hundreds of diseases affecting humans that result from errors in cellular production of its proteins. A team of researchers recently leveraged the power of cutting-edge technology, including an innovative technique called glycoproteomics, to unlock the carbohydrate-based code that governs how certain classes of proteins form themselves into the complex shapes necessary to keep us healthy.
Published New technique efficiently offers insight into gene regulation



Researchers have developed a new technique called MAbID. This allows them to simultaneously study different mechanisms of gene regulation, which plays a major role in development and disease. MAbID offers new insights into how these mechanisms work together or against each other.
Published Unlocking the secret strength of marine mussels



How do you create strong, yet quick-release connections between living and non-living tissues? This is a question that continues to puzzle bioengineers who aim to create materials that bond together for advanced biomedical applications. Looking to nature for inspiration, this research zeroed in on the marine mussel byssus, a fibrous holdfast, which these bivalve mollusks use to anchor themselves in seashore habitats.
Published Harvesting more solar energy with supercrystals



Hydrogen is a building block for the energy transition. To obtain it with the help of solar energy, researchers have developed new high-performance nanostructures. The material holds a world record for green hydrogen production with sunlight.
Published Control over friction, from small to large scales



Friction is hard to predict and control, especially since surfaces that come in contact are rarely perfectly flat. New experiments demonstrate that the amount of friction between two silicon surfaces, even at large scales, is determined by the forming and rupturing of microscopic chemical bonds between them. This makes it possible to control the amount of friction using surface chemistry techniques.
Published Researchers show an old law still holds for quirky quantum materials



Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.
Published Armed to the hilt: Study solves mystery behind bacteria's extensive weaponry



A new study tackles the mystery of why bacteria often carry diverse ranges of weapons. The findings show that different weapons are best suited to different competition scenarios. Short-range weapons help bacteria to invade established communities; long-range weapons are useful once established.
Published Clever dosage control mechanism of biallelic genes



Researchers have uncovered a mechanism that safeguards the biallelic expression of haploinsufficient genes, shedding light on the importance of having two copies of each chromosome. A study identified the epigenetic regulator MSL2 an 'anti-monoallelic' factor that maintains biallelic gene dosage. This discovery not only reveals a communication system between parental alleles but also points to potential therapeutic strategies for diseases associated with haploinsufficient genes.
Published Researchers decipher enzyme scissors of intestinal microbes



Fruit and vegetables contain a variety of plant natural products such as flavonoids, which give fruits their colour and are said to have health-promoting properties. Most plant natural products occur in nature as glycosides, i.e. chemical compounds with sugars. In order for humans to absorb the healthy plant natural products, the sugar must be split off in the intestine. Microorganisms in the intestinal flora help to speed up the process. So-called C-glycosides, i.e. plant natural products with a carbon-based bond to a sugar, would even be practically indigestible without the intestinal microbes (e.g. nothofagin in rooibos tea).
Published Releasing brakes on biocatalysis



Enzymes from microorganisms can produce hydrogen (H2) under certain conditions, which makes them potential biocatalysts for biobased H2 technologies. In order to make this hydrogen production efficient, researchers are trying to identify and eliminate possible limiting factors. These include formaldehyde, which occurs naturally as a metabolic product in cells and inhibits the particularly efficient [FeFe] hydrogenase.
Published What was thought of as noise, points to new type of ultrafast magnetic switching



Researchers discover a new type of ultrafast magnetic switching by investigating fluctuations that normally tend to interfere with experiments as noise.
Published Tracing the evolution of the 'little brain'



The evolution of higher cognitive functions in humans has so far mostly been linked to the expansion of the neocortex. Researchers are increasingly realizing, however, that the 'little brain' or cerebellum also expanded during evolution and probably contributes to the capacities unique to humans. A research team has now generated comprehensive genetic maps of the development of cells in the cerebella of human, mouse and opossum. Comparisons of these maps reveal both ancestral and species-specific cellular and molecular characteristics of cerebellum development.
Published Nano-sized cell particles are promising intervention tool in treating infectious diseases



Extracellular vesicles were found to inhibit the viral infection of COVID-19 and potentially other infectious diseases.
Published The secret life of an electromagnon



Scientists have revealed how lattice vibrations and spins talk to each other in a hybrid excitation known as an electromagnon. To achieve this, they used a unique combination of experiments on an X-ray free electron laser. Understanding this fundamental process at the atomic level opens the door to ultrafast control of magnetism with light.
Published Scientists harness flower 'super power' to pave the way for new drug treatments



Researchers have developed a way of joining up the head and tail of a protein, making it more stable and easier to get into cells.