Showing 20 articles starting at article 961

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Physics: General

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Ecology: Sea Life
Published

Rediscovery of rare marine amoeba Rhabdamoeba marina      (via sciencedaily.com)     Original source 

Researchers have rediscovered and successfully cultivating Rhabdamoeba marina -- a rare marine amoeba that has only been reported in two cases in the past century. Using this culture strain, they performed a comprehensive analysis of its genetic sequence, revealing for the first time the phylogenetic position of this enigmatic amoeba, and proposed a novel taxonomic classification based on their research findings.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Genomic tug of war could boost cancer therapy      (via sciencedaily.com)     Original source 

Researchers have discovered a 'genomic tug of war' in animal studies that could influence how well certain patients -- or certain cancers -- respond to decitabine, a drug used to treat myelodysplastic syndromes that is plagued by drug resistance issues. For the first time, researchers show that decitabine causes coding and non-coding regions of DNA to engage in a tug of war for a gene activator, called H2A.Z. Typically, deticabine draws this gene activator away from coding DNA, causing gene expression to grind to a halt and cells to die. However, many types of cancer have very high levels of H2A.Z, which may help them overcome this decitabine-induced tug of war, allowing the cancer to grow.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How cell identity is preserved when cells divide      (via sciencedaily.com)     Original source 

A new theoretical model helps explain how epigenetic memories, encoded in chemical modifications of chromatin, are passed from generation to generation.  Within each cell's nucleus, researchers suggest, the 3D folding patterns of its genome determines which parts of the genome will be marked by these chemical modifications.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Molecular Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Much more than waste: Tiny vesicles exchange genetic information between cells in the sea      (via sciencedaily.com)     Original source 

Researchers take a look at data that has so far been mostly discarded as contamination, revealing the previously underestimated role of extracellular vesicles (EVs). These are important for the exchange of genetic information between cells and thus for the microbial community in the sea.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Microbiology Ecology: Animals Geoscience: Geochemistry
Published

More than meows: How bacteria help cats communicate      (via sciencedaily.com)     Original source 

Many mammals, from domestic cats and dogs to giant pandas, use scent to communicate with each other. A new study shows how domestic cats send signals to each other using odors derived from families of bacteria living in their anal glands. 

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How bacteria recognize viral invasion and activate immune defenses      (via sciencedaily.com)     Original source 

Bacteria have an array of strategies to counter viral invasion, but how they first spot a stranger in their midst has long been a mystery.

Biology: Biotechnology Biology: Microbiology
Published

Visualizing 'traffic jams' inside living cells      (via sciencedaily.com)     Original source 

Researchers have unveiled a groundbreaking approach to label-free visualization of intracellular cargo trafficking in living cells, achieving high-speed and limitless observation capabilities. By developing a cargo-localization interferometric scattering (CL-iSCAT) microscope, scientists meticulously tracked the intricate movements of numerous cargos in the bustling cellular world. Surprisingly, cells employ human-like strategies to manage their transport challenges.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene Physics: General Physics: Quantum Physics
Published

Riddle of Kondo effect solved in ultimately thin wires      (via sciencedaily.com)     Original source 

A research team has now directly measured the so-called Kondo effect, which governs the behavior of magnetic atoms surrounded by a sea of electrons: New observations with a scanning tunneling microscope reveal the effect in one-dimensional wires floating on graphene. 

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Novel C. diff structures are required for infection, offer new therapeutic targets      (via sciencedaily.com)     Original source 

Newly discovered iron storage 'ferrosomes' inside the bacterium C. diff -- the leading cause of hospital-acquired infections -- are important for infection in an animal model and could offer new targets for antibacterial drugs. They also represent a rare demonstration of a membrane-bound structure inside a pathogenic bacterium, upsetting the biological dogma that bacteria do not contain organelles. 

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Shedding new light on sugars, the 'dark matter' of cellular biology      (via sciencedaily.com)     Original source 

Chemists have developed a new tool for detecting interactions between sugars and lectins, a discovery that could help in the fight against diseases like cancer.

Computer Science: Encryption Computer Science: Quantum Computers Mathematics: Puzzles Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Keep it secret: Cloud data storage security approach taps quantum physics      (via sciencedaily.com)     Original source 

Distributed cloud storage is a hot topic for security researchers, and a team is now merging quantum physics with mature cryptography and storage techniques to achieve a cost-effective cloud storage solution.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

A tale of two proteins: Fundamental research could make growing better crops like clockwork      (via sciencedaily.com)     Original source 

Rhomboid-like protein 10, or RBL10, is thought to be an enzyme that degrades other proteins in the chloroplast membrane, but its function is largely unknown. Researchers are studying how RBL10 affects photosynthetic membrane lipid metabolism, an essential process in photosynthesis.

Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Physics Space: Exploration Space: General Space: Structures and Features
Published

Tracking down quantum flickering of the vacuum      (via sciencedaily.com)     Original source 

Absolutely empty -- that is how most of us envision the vacuum. Yet, in reality, it is filled with an energetic flickering: the quantum fluctuations. Experts are currently preparing a laser experiment intended to verify these vacuum fluctuations in a novel way, which could potentially provide clues to new laws in physics. A research team has developed a series of proposals designed to help conduct the experiment more effectively -- thus increasing the chances of success.

Physics: General Physics: Optics
Published

Photo-induced superconductivity on a chip      (via sciencedaily.com)     Original source 

Researchers have shown that a previously demonstrated ability to turn on superconductivity with a laser beam can be integrated on a chip, opening up a route toward opto-electronic applications.

Computer Science: General Physics: General
Published

Twisted magnets make brain-inspired computing more adaptable      (via sciencedaily.com)     Original source 

Researchers used chiral (twisted) magnets as their computational medium and found that, by applying an external magnetic field and changing temperature, the physical properties of these materials could be adapted to suit different machine-learning tasks.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Mathematics: Modeling Physics: General Physics: Optics
Published

quantum mechanics: Unlocking the secrets of spin with high-harmonic probes      (via sciencedaily.com)     Original source 

Deep within every piece of magnetic material, electrons dance to the invisible tune of quantum mechanics. Their spins, akin to tiny atomic tops, dictate the magnetic behavior of the material they inhabit. This microscopic ballet is the cornerstone of magnetic phenomena, and it's these spins that a team of researchers has learned to control with remarkable precision, potentially redefining the future of electronics and data storage.

Biology: Biotechnology Chemistry: Biochemistry Chemistry: General
Published

New work sheds light on inner working of cells      (via sciencedaily.com)     Original source 

New research provides a deeper understanding of the way components within cells are interconnected. Through cellular visualization using SRS microscopy, researchers have addressed the challenge of attaining clear images of individual processes.

Physics: General
Published

A revolution in crystal structure prediction of pharmaceutical drugs      (via sciencedaily.com)     Original source 

Scientists have redefined the state-of-the-art in modeling and predicting the free energy of crystals. Their work shows that crystal form stability under real-world temperature and humidity conditions can be reliably and affordably predicted through computer simulation.