Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics
Published

Novel genome editing approach restores hearing in adult preclinical models with genetic deafness      (via sciencedaily.com)     Original source 

Researchers restored hearing in preclinical mouse models with a specific form of inherited deafness called DFNA50 caused by mutations in microRNA, by using a novel in vivo CRISPR genome editing approach. Since mouse and human microRNAs have identical sequences, the researchers hope this work can one day be translated into applications for humans.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

A new twist on artificial 'muscles' for safer, softer robots      (via sciencedaily.com)     Original source 

Engineers have developed a new soft, flexible device that makes robots move by expanding and contracting -- just like a human muscle. To demonstrate their new device, called an actuator, the researchers used it to create a cylindrical, worm-like soft robot and an artificial bicep. In experiments, the cylindrical soft robot navigated the tight, hairpin curves of a narrow pipe-like environment, and the bicep was able to lift a 500-gram weight 5,000 times in a row without failing.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology
Published

Phage-derived enzyme targets E. faecalis biofilms to mitigate acute graft-versus-host disease      (via sciencedaily.com)     Original source 

Acute graft-versus-host disease occurs when donor immune cells attack the recipient's tissues after an allogeneic hematopoietic stem cell transplantation (allo-HCT). Researchers recently identified a bacteriophage-derived enzyme called endolysin capable of targeting biofilms formed by Enterococcus faecalis. Their findings offer hope for tailored interventions in allo-HCT.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology
Published

Discovery could help reduce adverse side effects of popular next-generation obesity medications      (via sciencedaily.com)     Original source 

By teasing apart the therapeutic benefits from the adverse effects of new generation obesity medications, researchers found a population of neurons in the brain that controls food intake without causing nausea in an animal model.

Anthropology: Cultures Anthropology: General Archaeology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Microbiology Paleontology: Fossils
Published

The plague may have caused the downfall of the Stone Age farmers      (via sciencedaily.com)     Original source 

Ancient DNA from bones and teeth hints at a role of the plague in Stone Age population collapse. Contrary to previous beliefs, the plague may have diminished Europe's populations long before the major plague outbreaks of the Middle Ages, new research shows.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New one-step method to make multiple edits to a cell's genome      (via sciencedaily.com)     Original source 

A team of scientists have developed a new method that enables them to make precise edits in multiple locations within a cell -- all at once. Using molecules called retrons, they created a tool that can efficiently modify DNA in bacteria, yeast, and human cells.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General Archaeology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Ecology: Research Paleontology: Fossils
Published

Ancient dingo DNA shows modern dingoes share little ancestry with modern dog breeds      (via sciencedaily.com)     Original source 

A study of ancient dingo DNA revealed that the distribution of modern dingoes across Australia, including those on K'gari (formerly Fraser Island), pre-dates European colonization and interventions like the dingo-proof fence.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry
Published

New bio-based tool quickly detects concerning coronavirus variants      (via sciencedaily.com)     Original source 

Researchers have developed a bioelectric device that can detect and classify new variants of coronavirus to identify those that are most harmful. It has the potential to do the same with other viruses, as well.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Ecology: Trees
Published

Genomic data integration improves prediction accuracy of apple fruit traits      (via sciencedaily.com)     Original source 

Genotyping techniques can be used to select fruit trees with desired traits at the seedling stage, increasing the efficiency of fruit tree breeding. However, so far, there are multiple different genotyping systems, each generating distinct datasets. In a recent study, Japanese scientists revealed that integrating genomic data obtained with different genotyping systems can effectively combine with historical data, leveraging the accuracy of genomic predictions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Visualizing short-lived intermediate compounds produced during chemical reactions      (via sciencedaily.com)     Original source 

Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

GeneMAP discovery platform will help define functions for 'orphan' metabolic proteins      (via sciencedaily.com)     Original source 

Researchers have developed a discovery platform to probe the function of genes involved in metabolism -- the sum of all life-sustaining chemical reactions. The investigators used the new platform, called GeneMAP (Gene-Metabolite Association Prediction), to identify a gene necessary for mitochondrial choline transport.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

Not so selfish after all: Viruses use freeloading genes as weapons      (via sciencedaily.com)     Original source 

Certain pieces of DNA have been labeled as 'selfish genetic elements' due to notions that they don't contribute to a host organism's survival. Instead, researchers have now discovered that these elements have been weaponized and play a crucial role by cutting off a competitor's ability to reproduce.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Never-before-seen view of gene transcription captured      (via sciencedaily.com)     Original source 

New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A genetic algorithm for phononic crystals      (via sciencedaily.com)     Original source 

Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

A new breakthrough in understanding regeneration in a marine worm      (via sciencedaily.com)     Original source 

The sea worm Platynereis dumerilii is only a few centimeters long but has a remarkable ability: in just a few days, it can regenerate entire parts of its body after an injury or amputation. By focusing more specifically on the mechanisms at play in the regeneration of this worm's tail, a research team has observed that gut cells play a role in the regeneration of the intestine as well as other tissues such as muscle and epidermis.