Showing 20 articles starting at article 521
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Ecology: Trees
Published New technology unscrambles the chatter of microbes



Researchers have developed a new search tool to that can match microbes to the metabolites they produce with no prior knowledge, an innovation that could transform our understanding of both human health and the environment.
Published Mechanism discovered that protects tissue after faulty gene expression



A study has identified a protein complex that is activated by defects in the spliceosome, the molecular scissors that process genetic information. Future research could lead to new therapeutic approaches to treat diseases caused by faulty splicing.
Published Rare 3D fossils show that some early trees had forms unlike any you've ever seen



In the fossil record, trees typically are preserved with only their trunks. They don't usually include any leaves to show what their canopies and overall forms may have looked like. In a new study, researchers describe fossilized trees from New Brunswick, Canada with a surprising and unique three-dimensional crown shape.
Published Disrupted cellular function behind type 2 diabetes in obesity



Disrupted function of 'cleaning cells' in the body may help to explain why some people with obesity develop type 2 diabetes, while others do not. A study describes this newly discovered mechanism.
Published A clutch stretch goes a long way



New results reveal a new mode of force transmission in which dynamic molecular stretching bridges the extracellular matrix and flowing F-actin moving at different speeds. This discovery underscores the necessity of molecular elasticity and random coupling for sufficiently transmitting force. The findings also call for revising the role of molecular unfolding.
Published Resistant bacteria can remain in the body for years



Fighting disease-causing bacteria becomes more difficult when antibiotics stop working. People with pre-existing conditions in particular can carry resistant germs and suffer from repeated infections for years, according to a new study.
Published Gut bacteria can process dietary fiber into an anti-allergy weapon



Short-chain fatty acids (SCFAs), which are produced by gut bacteria from dietary fiber, regulate our immune system, but the mechanism of their action remains unknown. In a recent study, researchers investigated how SCFAs interact with mast cells, a type of white blood cell that plays a central role in allergic reactions. Their findings and insights could lead to innovative and effective anti-allergy medications, supplements, and diets, paving the way for healthier lives.
Published Increased temperature difference between day and night can affect all life on earth



Researchers have discovered a change in what scientists already knew about global warming dynamics. It had been widely accepted since the 1950s that global temperature rises were not consistent throughout the day and night, with greater nighttime warming being observed. However, the recent study reveals a shift in dynamics: with greater daytime warming taking place since the 1990s. This shift means that the temperature difference between day and night is widening, potentially affecting all life on Earth.
Published LSH genes associated with defining the shapes of stems, flowers and leaves required for N-fixing root nodules



The developmental regulators that confer the identity of N-fixing root nodules belong to a transcription factor family (LSH) more commonly associated with defining the shapes of stems, flowers and leaves.
Published Shining a new light on the tug-of-war between virus and host



The interplay between ribonucleic acid (RNA) and proteins is not only important for maintaining cellular homeostasis but is also at the center of the tug-of-war between virus and host. Until now, there has been no method to globally map direct interactions of individual RNA regions in an unbiased fashion without the need for genetic modification of the target RNA or cell. Researchers have now developed a breakthrough tool that overcomes this limitation.
Published Discovery of a third RNA virus linage in extreme environments Jan 17, 2024



A research group has discovered a novel RNA viral genome from microbes inhabiting a high-temperature acidic hot spring. Their study shows that RNA viruses can live in high-temperature environments (70-80 degrees Celsius), where no RNA viruses have been observed before. In addition to the two known RNA virus kingdoms, a third kingdom may exist.
Published Groundbreaking genome editing tools unlock new possibilities for precision medicine



A team of researchers has achieved a major breakthrough in genome editing technology. They've developed a cutting-edge method that combines the power of designer-recombinases with programmable DNA-binding domains to create precise and adaptable genome editing tools.
Published How seahorse-like toxins kill insects



Insect-killing bacteria typically release toxins to slay their hosts. The bacterium Photorhabdus luminescens, for example, pumps insect larvae full of the lethal 'Makes caterpillars floppy 1' (Mcf1) toxin, leading them to first become droopy and then dead. However, it has so far been a mystery how Mcf1 unfolds its devastating effect. Researchers successfully used cryo-electron microscopy (cryo-EM) and biochemical assays to characterize the first-ever Mcf1 structure, allowing them to propose a molecular mechanism of the toxin's action. Understanding how bacterial toxins perform their deadly task in such detail is very useful for engineering novel biopesticides, thereby reducing the use of barely specific chemical agents with harmful side effects for the ecosystem.
Published Engineering viruses to kill deadly pathogens



Antimicrobial resistance is an urgent and growing global crisis. Researchers are exploring phages, viruses that infect bacteria, as a possible solution. In the new study, researchers successfully modified DNA from four types of phages to kill a deadly pathogen. The process can also be used to produce more phage variants for further exploration.
Published Using computers to design proteins allows researchers to make tunable hydrogels that can form both inside and outside of cells



New research demonstrates a new class of hydrogels that can form not just outside cells, but also inside of them. These hydrogels exhibited similar mechanical properties both inside and outside of cells, providing researchers with a new tool to group proteins together inside of cells.
Published DNA particles that mimic viruses hold promise as vaccines



Using a DNA-based delivery particle, researchers created a vaccine that can induce a strong antibody response against SARS-CoV-2.
Published Asparagus and orchids are more similar than you think



How is a beech leaf constructed? What determines the appearance of an asparagus? A new 'encyclopaedia' helps us learn more about the building blocks of plants. The encyclopaedia, probably the largest of its kind, could be used to improve targeted plant breeding efforts, to make them both more climate-resilient and more easily digestible.
Published 'Genomic time machine' reveals secrets of our DNA



Researchers reveal a novel method to uncover bits of our genetic blueprint that come from ancient genetic parasites, offering fresh insights into human evolution and health.
Published Do tree-planting campaigns follow best practices for successful forest restoration?



New research reviewed publicly available information for 99 different organizations that coordinate large-scale tree-planting programs around the globe to see if these organizations seemed to be applying best practices for successful reforestation.
Published A non-allergenic wheat protein for growing better cultivated meat



As the world's population increases, cultivated or lab-grown meat -- animal muscle and fat cells grown in laboratory conditions -- has emerged as a potential way to satisfy future protein needs. And edible, inexpensive plant proteins could be used to grow these cell cultures. Now, researchers report that the non-allergenic wheat protein glutenin successfully grew striated muscle layers and flat fat layers, which could be combined to produce meat-like textures.