Showing 20 articles starting at article 881
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Geoscience: Earthquakes
Published Researchers cultivate archaea that break down crude oil in novel ways



The seafloor is home to around one-third of all the microorganisms on the Earth and is inhabited even at a depth of several kilometers. Only when it becomes too hot does the abundance of microorganisms appear to decline. But how, and from what, do microorganisms in the deep seafloor live? How do their metabolic cycles work and how do the individual members of these buried communities interact? Researchers have now been able to demonstrate in laboratory cultures how small, liquid components of crude oil are broken down through a new mechanism by a group of microorganisms called archaea.
Published Symbiotic and pathogenic fungi may use similar molecular tools to manipulate plants



Symbiotic and pathogenic fungi that interact with plants are distantly related and don't share many genetic similarities. Comparing plant pathogenic fungi and plant symbiotic fungi, scientists at the Sainsbury Laboratory Cambridge University (SLCU) have discovered that these remote relatives are using a similar group of proteins to manipulate and live within plants.
Published DNA damage repaired by antioxidant enzymes



In crisis, the nucleus calls antioxidant enzymes to the rescue. The nucleus being metabolically active is a profound paradigm shift with implications for cancer research.
Published Engineers report low-cost human biomarker sensor designs



Researchers have developed a low-cost, RNA-based technology to detect and measure biomarkers, which can help decode the body's physiology. The presence of protein biomarkers can indicate chronic or acute conditions, from arthritis to cancer to bacterial infections, for which conventional tests can cost anywhere from $100 to upwards of $1,000. The new technology can perform the same measurement for about a dollar.
Published Researchers show mobile elements monkeying around the genome



Whole-genomic sequencing has revolutionized the amount and detail of genetic diversity now available to researchers to study. While the researchers previously had looked at a few hundred mobile elements or 'jumping genes,' primarily of the Alu and L1 types, they were now able to analyze over 200,000 elements computationally, confirming and expanding on previous studies. Their findings provide more evidence of the fluidity of species and continuous spread of mobile and transposable genetic elements.
Published Phenomenal phytoplankton: Scientists uncover cellular process behind oxygen production



According to new research, the amount of oxygen in one of 10 breaths was made possible thanks to a newly identified cellular mechanism that promotes photosynthesis in marine phytoplankton. The new study identifies how a proton pumping enzyme (known as VHA) aids in global oxygen production and carbon fixation from phytoplankton.
Published How the flu virus hacks our cells



Influenza epidemics, caused by influenza A or B viruses, result in acute respiratory infection. They kill half a million people worldwide every year. These viruses can also wreak havoc on animals, as in the case of avian flu. A team has now identified how the influenza A virus manages to penetrate cells to infect them. By attaching itself to a receptor on the cell surface, it hijacks the iron transport mechanism to start its infection cycle. By blocking the receptor involved, the researchers were also able to significantly reduce its ability to invade cells. These results highlight a vulnerability that could be exploited to combat the virus.
Published Researchers use 'natural' system to identify proteins most useful for developing an effective HIV vaccine



Scientists have spent years trying to develop an effective HIV vaccine, but none have proven successful. Based on findings from a recently published study, a research team may have put science one step closer to that goal.
Published New DNA testing technology shows majority of wild dingoes are pure, not hybrids



Genetic analysis shows dingo populations have significantly less dog ancestry than previously thought.
Published Scientists unveil RNA-guided mechanisms driving cell fate



The early stages of embryonic development contain many of life's mysteries. Unlocking these mysteries can help us better understand early development and birth defects, and help develop new regenerative medicine treatments. Researchers have now characterized a critical time in mammalian embryonic development using powerful and innovative imaging techniques.
Published Groundbreaking images of root chemicals offer new insights on plant growth



Applying imaging technology to plant roots, researchers have developed a new understanding of chemicals that are responsible for plant growth. The chemical 'roadmap' identifies where key molecules are distributed along corn roots and how their placement factors into the plant's maturation.
Published Protein-based nano-'computer' evolves in ability to influence cell behavior



The first protein-based nano-computing agent that functions as a circuit has been created. The milestone puts them one step closer to developing next-generation cell-based therapies to treat diseases like diabetes and cancer.
Published Research offers clues for potential widespread HIV cure in people



New animal research is helping explain why at least five people have become HIV-free after receiving a stem cell transplant, and may bring scientists closer to developing what they hope will be a widespread cure for the virus that causes AIDS. A new study describes how two nonhuman primates were cured of the monkey form of HIV after receiving a stem cell transplant. It also reveals that two circumstances must co-exist for a cure to occur and documents the order in which HIV is cleared from the body.
Published How sweet it is: The fruit fly gut influences reproduction by 'tasting' fructose



A research group has found that in fruit flies (Drosophila melanogaster), circulating fructose derived from dietary sugar is needed for enhanced egg production after mating. In this species, circulating fructose is required for an increase in germline stem cells, which divide into reproductive cells. This increase leads to enhanced post-mating egg production. These findings may help to determine whether fructose influences the reproduction of mammals, including humans.
Published Researchers successfully induce primate oocytes in the lab



The many types of cells in the human body are produced through the process of differentiation, in which stem cells are converted to more specialized types. Currently, it is challenging for researchers to control the differentiation of stem cells in the lab (in vitro). Of particular interest are oocytes, which are female germ cells that develop into eggs. Understanding their development could have far-ranging impacts, from infertility treatment to conservation of endangered species. A new study has successfully induced meiotic (dividing) oocytes from the embryonic stem cells of cynomolgus monkeys, which share many physiological traits with humans. By establishing a culture method for inducing the differentiation of meiotic oocytes, the researchers aimed to shed light on germ cell development in both humans and other primates.
Published Gene editing tool could help reduce spread of antimicrobial resistance



A new tool which could help reduce the spread of antimicrobial resistance is showing early promise, through exploiting a bacterial immune system as a gene editing tool.
Published How tasty is the food?



A hormone and specialized brain cells regulate feeding behavior in mice.
Published 'Segment-jumping' ridgecrest earthquakes explored in new study



Seismologists used a powerful supercomputer that incorporated data-infused and physics-based models to identify the link between the 2019 Ridgecrest earthquakes.
Published Where do our limbs come from?



Scientists have uncovered new clues about the origin of paired appendages -- a major evolutionary step that remains unresolved and highly debated.
Published A look into the heart of cellular waste disposal



Researchers reveal how a nanomachine takes care of cleaning up inside the cell.