Showing 20 articles starting at article 681
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Geoscience: Severe Weather
Published Researchers map how measles virus spreads in human brain



Researchers mapped how the measles virus mutated and spread in the brain of a person who succumbed to a rare, lethal brain disease. New cases of this disease, which is a complication of the measles virus, may occur as measles reemerges among the unvaccinated, say researchers.
Published GPCR structure: Research reveals molecular origins of function for a key drug target



Scientists reveal how G protein-coupled receptors, major therapeutic drug targets, decode critical properties of their ligands.
Published New tool unifies single-cell data



A new methodology that allows for the categorization and organization of single-cell data has been launched. It can be used to create a harmonized dataset for the study of human health and disease.
Published Location, location, location: The hidden power of intracellular neighborhoods



New findings provide details about the hidden organization of the cytoplasm, showing it makes a big difference where in that cellular broth that messenger RNA (mRNA) get translated into proteins. The findings hold promise for increasing or altering the production of proteins in mRNA vaccines and therapies.
Published The future of canine stem cell therapy: unprecedented, painless, and feeder-free



Scientists have developed an efficient, non-invasive, and pain-free method to generate canine-induced pluripotent stem cells (iPSCs). They identified six reprogramming genes that can boost canine iPSC generation by 120 times compared to conventional methods using fibroblasts. The iPSCs were created from urine-derived cells without the need for feeder cells, an impossible feat until now. Their findings are expected to advance regenerative medicine and genetic disease research in veterinary medicine.
Published The key mechanism to cell growth has been elucidated



Researchers have discovered how amino acids activate a key cell, TORC1, which is a master regulator in living organisms that controls whether cells grow or recycle their contents in yeast. Notably, the team found that the amino acid cysteine is sensed by a protein called Pib2 and that the two bind together to trigger TORC1. This is important because faulty TORC1 has been linked to disease such as cancer.
Published Bugs that help bugs: How environmental microbes boost fruit fly reproduction



A research group found that in female fruit flies, microorganisms enhance reproductive function, boosting the number of cells that form eggs and the number of mature eggs. This is done by controlling the release of hormones to speed up cell division in the ovaries, and limiting programmed cell death. These findings could improve reproductive medicine and could aid the development of new methods to enhance fertility.
Published Researchers solve mystery behind DnaA protein's role in DNA replication initiation



Scientists have uncovered how DnaA, the master key to DNA replication, opens the door to bacterial growth. This breakthroughpaves the way for new antibiotics to combat the rising tide of antibiotic resistance.
Published New insights revealed on tissue-dependent roles of JAK signaling in inflammation



Researchers have gained a deeper understanding of the nuanced roles of JAK inhibitors, or modulators, in inflammation across various cell types and tissues.
Published How researchers are 'CReATiNG' synthetic chromosomes faster and cheaper



A new technique to clone and reassemble DNA, dubbed CReATiNG, could simplify and lower the cost to make synthetic chromosomes. Potential applications are numerous, including pharmaceutical production, biofuel generation, cancer therapies, and environmental cleanup using modified organisms. The method adds a powerful, versatile tool to the burgeoning field of synthetic biology.
Published Discovery: Plants use 'Trojan horse' to fight mold invasions



Scientists have discovered that plants send tiny, innocuous-seeming lipid 'bubbles' filled with RNA across enemy lines, into the cells of the aggressive mold. Once inside, different types of RNA come out to suppress the infectious cells that sucked them in.
Published A trillion scents, one nose



A research team has uncovered a previously undetected mechanism in mice -- starring the genetic molecule RNA -- that could explain how each sensory cell, or neuron, in mammalian noses becomes tailored to detect a specific odor chemical.
Published Cells of the future: A key to reprogramming cell identities



The intricate process of duplicating genetic information, referred to as DNA replication, lies at the heart of the transmission of life from one cell to another and from one organism to the next. This happens by not just simply copying the genetic information; a well-orchestrated sequence of molecular events has to happen at the right time. Scientists have recently uncovered a fascinating aspect of this process known as 'replication timing' (RT) and how special this is when life commences.
Published Finding new ways to adapt to a growing weather threat



Research reveals a steady increase in the number of people at risk from tropical cyclones and the number of days per year these potentially catastrophic storms threaten health and livelihoods. The findings could help relief agencies, development banks, and other organizations plan more effective strategies for mitigating extreme weather impacts.
Published Scientists uncover link between the ocean's weather and global climate



Scientists outline the first direct evidence linking seemingly random weather systems in the ocean with climate on a global scale. The team's work creates a promising framework for better understanding the climate system.
Published Multitasking microbes: Scientists engineer bacteria to make two valuable products from plant fiber



Researchers have engineered bacteria that can produce two chemical products at the same time from underutilized plant fiber. And unlike humans, these multitasking microbes can do both things equally well. The discovery could help make biofuels more sustainable and commercially viable.
Published New study examines the relationship between the rate of wound healing, the circadian rhythm, and 'hair' on cells



Nearly every organism on Earth follows a natural circadian rhythm that is coded by your cell's clock genes, which do exactly as you suspect from the name: regulate your body's rhythm on a 24-hour basis. Most cells in mammalian bodies have cilia of some sort, which are hair-like structures that perform a variety of functions such as movement for motile cilia and aiding in structure in function for non-motile, or primary, cilia. The primary cilia also act as a sensory organ for the cell, a function which has illuminated the primary cilia's potential role in the healing process and how bodies heal at a different rate according to our circadian rhythm. In this research, the role of the primary cilia, biological clock and wound healing is explored.
Published Protein allows poison dart frogs to accumulate toxins safely



A newly identified protein helps poison dart frogs accumulate and store a potent toxin in their skin which they use for self-defence against predators.
Published Genetic sequencing uncovers unexpected source of pathogens in floodwaters



Researchers report that local rivers and streams were the source of the Salmonella enterica contamination along coastal North Carolina after Hurricane Florence in 2018 -- not the previously suspected high number of pig farms in the region.
Published Genetics of host plants determine what microorganisms they attract



Plants often develop communities with microorganisms in their roots, which influences plant health and development. Although the recruitment of these microbes is dictated by several factors, it is unclear whether the genetic variation in the host plants plays a role.