Showing 20 articles starting at article 721
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Geoscience: Landslides
Published Atlantic walrus more vulnerable than ever to Arctic warming



Past cycles of climate change, along with human exploitation, have led to only small and isolated stocks of Atlantic walrus remaining. The current population is at high risk of the same issues affecting them severely, according to a new study.
Published Tiny CRISPR tool could help shred viruses



Scientists mapped out the three-dimensional structure of one of the smallest known CRISPR-Cas13 systems then used that knowledge to modify its structure and improve its accuracy.
Published Novel bacterial proteins from seafloor shine light on climate and astrobiology



Researchers have unveiled a remarkable discovery: the identification of novel bacterial proteins that play a vital role in the formation and stability of methane clathrates, which trap gigatons of greenhouse gas beneath the seafloor. These newfound proteins not only suppress methane clathrate growth as effectively as toxic chemicals used in drilling but also prove to be eco-friendly and scalable. This innovative breakthrough not only promises to enhance environmental safety in natural gas transportation but also sheds light on the potential for similar biomolecules to support life beyond Earth.
Published Study shows how a single neuron's parallel outputs can coordinate many aspects of behavior



In C. elegans worms, a single neuron named HSN uses multiple chemicals and connections to orchestrate egg-laying and locomotion over the course of several minutes.
Published Researchers discover disease-causing stem cells in lungs of cystic fibrosis patients



Experts in cloning and stem cell science are reporting that five lung stem cell variants dominate the lungs of patients with advanced cystic fibrosis, and that these variants drive key aspects of CF pathology including inflammation, fibrosis and mucin secretion.
Published A close-up of biological nanomachines: Researchers take a deep look at peroxisomal processes


The cell organelles known as 'peroxisomes' dispose toxic substances and fats in the human body, among other things, and, in doing so, they prevent serious illnesses. The 'Pex' group of proteins (peroxisomes biogenesis factors) keep these 'detox units' functioning properly -- and now researchers have shown, at the atomic level, how these highly complex processes proceed.
Published Genetically engineering associations between plants and nitrogen-fixing microbes could lessen dependence on synthetic fertilizer



Nitrogen is an essential nutrient for plant growth, but the overuse of synthetic nitrogen fertilizers in agriculture is not sustainable. A team of bacteriologists and plant scientists discuss the possibility of using genetic engineering to facilitate mutualistic relationships between plants and nitrogen-fixing microbes called 'diazotrophs.' These engineered associations would help crops acquire nitrogen from the air by mimicking the mutualisms between legumes and nitrogen-fixing bacteria.
Published Antibiotics can help some bacteria survive for longer



Scientists have found a surprising effect of some antibiotics on certain bacteria -- that the drugs can sometimes benefit bacteria, helping them live longer.
Published Discovery in mosquitoes could lead to new strategy against dengue fever and other mosquito-borne vectors



Researchers have made an important finding about Aedes aegypti mosquitoes -- one that could one day lead to better methods for reducing the mosquito-to-human transmission of dengue, yellow fever, Zika, and other harmful and sometimes deadly viruses.
Published Same genes behind heart muscle disorders in humans and Dobermanns



Researchers have made a significant finding in determining the genetic background of dilated cardiomyopathy in Dobermanns. This research helps us understand the genetic risk factors related to fatal diseases of the heart muscle and the mechanisms underlying the disease, and offers new tools for their prevention.
Published Conversations with plants: Can we provide plants with advance warning of impending dangers?



Plant scientists have engineered a light-controlled gene expression system (optogenetics system) from a prokaryotic system into a eukaryotic system that is tailored for plants.
Published This parasitic plant convinces hosts to grow into its own flesh--it's also an extreme example of genome shrinkage



Balanophora shed one third of its genes as it evolved into a streamlined parasitic plant -- an extreme degree of genome shrinkage even among parasites. Along the way this subtropical plant developed the ability to induce the host plant to grow into the parasite's own flesh -- forming chimeric organs that mix host and parasite tissues.
Published Researchers develop first method to study microRNA activity in single cells


Researchers have developed the first method to uncover the tasks that microRNAs perform in single cells. This is a huge improvement over existing state-of-the-art methods that require millions of cells and will for the first time allow researchers to study microRNAs in complex tissues such as brains.
Published Split gene-editing tool offers greater precision


To make a gene-editing tool more precise and easier to control, engineers split it into two pieces that only come back together when a third molecule is added.
Published Unzipping mRNA rallies plant cells to fight infection



Living things from plants to humans must constantly adjust the chemical soup of proteins -- the workhorse molecules of life -- inside their cells to adapt to stress or changing conditions. Now, researchers have identified a previously unknown molecular mechanism that helps explain how they do it. A team now reveals hairpin-like structures of mRNA that, by zipping and unzipping, help cells change the mix of proteins they produce when under stress.
Published Genetically modifying individual cells in animals



Researchers have developed a method that lets them genetically modify each cell differently in animals. This allows them to study in a single experiment what used to require many animal experiments. Using the new method, the researchers have discovered genes that are relevant for a severe rare genetic disorder.
Published Sometimes beneficial, sometimes damaging: The double role of the enzyme chameau



Biologists have discovered why an enzyme is important for the survival of fruit flies, even though it can shorten their lives under certain conditions.
Published Spider silk is spun by silkworms for the first time, offering a green alternative to synthetic fibers


Scientists have synthesized spider silk from genetically modified silkworms, producing fibers six times tougher than the Kevlar used in bulletproof vests. The study is the first to successfully produce full-length spider silk proteins using silkworms. The findings demonstrate a technique that could be used to manufacture an environmentally friendly alternative to synthetic commercial fibers such as nylon.
Published Fast-track strain engineering for speedy biomanufacturing


Using engineered microbes as microscopic factories has given the world steady sources of life-saving drugs, revolutionized the food industry, and allowed us to make sustainable versions of valuable chemicals previously made from petroleum. But behind each biomanufactured product on the market today is the investment of years of work and many millions of dollars in research and development funding. Scientists want to help the burgeoning industry reach new heights by accelerating and streamlining the process of engineering microbes to produce important compounds with commercial-ready efficiency.
Published Tiny sea creatures reveal the ancient origins of neurons



A new study sheds new light on the origins of modern brain cells. Researchers find evidence that specialized secretory cells found in placozoans, tiny sea creatures the size of a grain of sand, have many similarities to the neuron, such as the genes required to create a partial synapse. From an evolutionary point of view, early neurons might have started as something like these cells, eventually gaining the ability to create a complete synapse, form axons and dendrites and create ion channels that generate fast electrical signals -- innovations which gave rise to the neuron in more complex animals such as jellyfish. Though the complete story of how the first neuron appeared remains to be told, the study demonstrates that the basic building blocks for our brain cells were forming in the ancestors of placozoans grazing inconspicuously in the shallow seas of Earth around 800 million years ago.