Showing 20 articles starting at article 521
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Geoscience: Oceanography
Published Cracking epigenetic inheritance: Biologists discovered the secrets of how gene traits are passed on



A research team has recently made a significant breakthrough in understanding how the DNA copying machine helps pass on epigenetic information to maintain gene traits at each cell division. Understanding how this coupled mechanism could lead to new treatments for cancer and other epigenetic diseases by targeting specific changes in gene activity.
Published What makes a pathogen antibiotic-resistant?



In a comparative study, researchers describe how two notable pathogens -- Escherichia coli and Acinetobacter baumannii -- employ distinctly different tools to fend off antibiotic attack by two different drugs.
Published Microbes impact coral bleaching susceptibility



A new study provides insights into the role of microbes and their interaction as drivers of interspecific differences in coral thermal bleaching.
Published Understanding wind and water at the equator key to more accurate future climate projections



Getting climate models to mimic real-time observations when it comes to warming is critical -- small discrepancies can lead to misunderstandings about the rate of global warming as the climate changes. A new study that when modeling warming trends in the Pacific Ocean, there is still a missing piece to the modeling puzzle: the effect of wind on ocean currents in the equatorial Pacific.
Published Early life adversity leaves long-term signatures in baboon DNA



Early experiences in an animal's life can have a significant impact on its capacity to thrive, even years or decades later, and DNA methylation may help record their effects. In a study of 256 wild baboons, researchers found that resource limitation during early life was associated with many differences in DNA methylation, a small chemical mark on the DNA sequence that can affect gene activity.
Published The world's most prolific CO2-fixing enzyme is slowly getting better



New research has found that rubisco -- the enzyme that fuels all life on Earth -- is not stuck in an evolutionary rut after all. The largest analysis of rubisco ever has found that it is improving all the time -- just very, very slowly. These insights could potentially open up new routes to strengthen food security.
Published Marine algae implants could boost crop yields



Scientists have discovered the gene that enables marine algae to make a unique type of chlorophyll. They successfully implanted this gene in a land plant, paving the way for better crop yields on less land.
Published Revealing the evolutionary origin of genomic imprinting



Some of our genes can be expressed or silenced depending on whether we inherited them from our mother or our father. The mechanism behind this phenomenon, known as genomic imprinting, is determined by DNA modifications during egg and sperm production.
Published Universal tool for tracking cell-to-cell interactions



An updated method for directly observing physical interactions between cells, could allow scientists to one day map every possible cell interaction.
Published Synthetic gene helps explain the mysteries of transcription across species



'Random DNA' is naturally active in the one-celled fungi yeast, while such DNA is turned off as its natural state in mammalian cells, despite their having a common ancestor a billion years ago and the same basic molecular machinery, a new study finds.
Published Decoding the language of epigenetic modifications



Epigenetic changes play important roles in cancer, metabolic and aging-related diseases, but also during loss of resilience as they cause the genetic material to be incorrectly interpreted in affected cells. A major study now provides important new insights into how complex epigenetic modification signatures regulate the genome. This study will pave the way for new treatments of diseases caused by faulty epigenetic machineries.
Published Herbivores, displaced by ocean warming, threaten subtropical seagrass meadows



The findings suggest that subtropical seagrasses are less resilient to heavy grazing from marine herbivores, in part because they receive less sunlight relative to their tropical counterparts. As tropical herbivores move into subtropical waters, overgrazing may prevent subtropical seagrass meadows from persisting in these environments.
Published New deep-sea worm discovered at methane seep off Costa Rica



Marine biologists have discovered a new species of deep-sea worm living near a methane seep some 50 kilometers (30 miles) off the Pacific coast of Costa Rica.
Published Tiny worms tolerate Chornobyl radiation



A new study finds that exposure to chronic radiation from Chornobyl has not damaged the genomes of microscopic worms living there today -- which doesn't mean that the region is safe, the scientists caution, but suggests that these worms are exceptionally resilient.
Published Researchers explore non-invasive method for sampling drug response



Harnessing a pervasive type of cellular messenger shows early experimental promise as a routine way of sampling and monitoring the body's response to prescription drug exposure. Experiments have successfully isolated drug-metabolizing enzymes from extracellular vesicles (EVs), which are widely secreted throughout the body for cellular communication.
Published Lab-grown liver organoid to speed up turtle research, making useful traits easier to harness



Researchers developed protocols for growing organoids that mimic a turtle liver, the first organoids developed for a turtle and only the second for any reptile. The discovery will aid deeper study of turtle genetics, including the cause of traits with potential medical applications for humans such as the ability to survive weeks without oxygen.
Published After decades of Arctic sea ice getting faster and more hazardous for transport, models suggest a dramatic reversal is coming



Will ice floating in the Arctic Ocean move faster or slower over the coming decades? The answer to this question will tell us whether marine transportation can be expected to get more or less hazardous. It might also have important implications for the rate of ice cover loss, which is hugely consequential for Northern Indigenous communities, ecosystems, and the global climate system. While observational data suggest the trend has been towards faster sea ice speeds, climate models project that those speeds will slow down during the summer season. This contrast has led to some questions around the plausibility of the model projections.
Published We know the Arctic is warming -- What will changing river flows do to its environment?



Scientists recently combined satellite data, field observations and sophisticated numerical modeling to paint a picture of how 22.45 million square kilometers of the Arctic will change over the next 80 years. As expected, the overall region will be warmer and wetter, but the details -- up to 25% more runoff, 30% more subsurface runoff and a progressively drier southern Arctic, provides one of the clearest views yet of how the landscape will respond to climate change.
Published Arctic could become 'ice-free' within a decade



While summer sea ice loss in the Arctic is inevitable, it can be reversed if the planet cools down, researchers say.
Published Less ice in the Arctic Ocean has complex effects on marine ecosystems and ocean productivity



Most of the sunlight reaching the Arctic Ocean is reflected to space by sea ice, effectively shielding ocean ecosystems from sunlight. As the Arctic sea ice continues its downward trend, larger areas of the ocean become exposed to sunlight for longer periods, potentially allowing more primary production on the seafloor. However, according to a new study, this anticipated increase in primary production does not seem to be occurring uniformly across the Arctic Ocean.