Showing 20 articles starting at article 681

< Previous 20 articles        Next 20 articles >

Categories: Anthropology: General, Biology: Biotechnology

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Influx of water and salts propel immune cells through the body      (via sciencedaily.com)     Original source 

Researchers have shown that an influx of water and ions into immune cells allows them to migrate to where they're needed in the body.  

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

Sugar permeation discovered in plant aquaporins      (via sciencedaily.com)     Original source 

Aquaporins, which move water through membranes of plant cells, were not thought to be able to permeate sugar molecules, but researchers have observed sucrose transport in plant aquaporins for the first time, challenging this theory.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Macrophages 'eat' insulin-producing cells to regulate insulin after mice have given birth      (via sciencedaily.com)     Original source 

Pregnancy brings a rise in pancreatic beta cells -- the cells that produce insulin. Shortly after birth, these cells return to their normal levels. The mechanisms behind this process had remained a mystery. But now a research group has revealed that white blood cells called macrophages 'eat' these cells. 

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

More than 100 'magic mushroom' genomes point the way to new cultivars      (via sciencedaily.com)     Original source 

Scientists have amassed genome data for dozens of 'magic mushroom' isolates and cultivars, with the goal to learn more about how their domestication and cultivation has changed them. The findings may point the way to the production of intriguing new cultivars, say the researchers.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers have cracked the cellular code on protein folding, offering hope for new therapeutic avenues for many diseases      (via sciencedaily.com)     Original source 

While we often think of diseases as caused by foreign bodies -- bacteria or viruses -- there are hundreds of diseases affecting humans that result from errors in cellular production of its proteins. A team of researchers recently leveraged the power of cutting-edge technology, including an innovative technique called glycoproteomics, to unlock the carbohydrate-based code that governs how certain classes of proteins form themselves into the complex shapes necessary to keep us healthy.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New technique efficiently offers insight into gene regulation      (via sciencedaily.com)     Original source 

Researchers have developed a new technique called MAbID. This allows them to simultaneously study different mechanisms of gene regulation, which plays a major role in development and disease. MAbID offers new insights into how these mechanisms work together or against each other.

Anthropology: General Paleontology: Climate
Published

Aging societies more vulnerable to collapse      (via sciencedaily.com)     Original source 

Societies and political structures, like the humans they serve, appear to become more fragile as they age, according to an analysis of hundreds of pre-modern societies. A new study, which holds implications for the modern world, provides the first quantitative support for the theory that the resilience of political states decreases over time. 

Biology: Biotechnology Biology: Cell Biology Biology: Molecular Ecology: Invasive Species Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Unlocking the secret strength of marine mussels      (via sciencedaily.com)     Original source 

How do you create strong, yet quick-release connections between living and non-living tissues? This is a question that continues to puzzle bioengineers who aim to create materials that bond together for advanced biomedical applications. Looking to nature for inspiration, this research zeroed in on the marine mussel byssus, a fibrous holdfast, which these bivalve mollusks use to anchor themselves in seashore habitats.

Anthropology: General Archaeology: General
Published

'Bone biographies' reveal lives of medieval England's common people -- and illuminate early benefits system      (via sciencedaily.com)     Original source 

Researchers give medieval Cambridge residents the 'Richard III treatment' to reveal hard-knock lives of those in the city during its famous university's early years. Study of over 400 remains from a hospital cemetery shows spectrum of medieval poverty, and suggests that some of Cambridge University's earliest scholars ended up in penury.   

Anthropology: Cultures Anthropology: Early Humans Anthropology: General
Published

Paleolithic humans may have understood the properties of rocks for making stone tools      (via sciencedaily.com)     Original source 

Research suggests that Paleolithic humans in the Middle East selected flint for their cutting tools based on differences in the mechanical properties of the rock. They seem to have purposefully selected the most suitable rocks for fashioning into tools, even being able to distinguish rocks that were unsuitable.

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Genetics Ecology: Animals
Published

A mixed origin made maize successful      (via sciencedaily.com)     Original source 

Maize is one of the world's most widely grown crops. It is used for both human and animal foods and holds great cultural significance, especially for indigenous peoples in the Americas. Yet despite its importance, the origins of the grain have been hotly debated for more than a century. Now new research shows that all modern maize descends from a hybrid created just over 5000 years ago in central Mexico, thousands of years after the plant was first domesticated.

Anthropology: General Archaeology: General Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography Paleontology: Climate
Published

Decoding past climates through dripstones      (via sciencedaily.com)     Original source 

A recent study demonstrates how dripstones can be crucial for reconstructing past climates. The new approach can provide a detailed picture of the climate around early human occupations in South Africa.

Anthropology: Early Humans Anthropology: General Archaeology: General Paleontology: Fossils
Published

Dishing the dirt on human evolution: Why scientific techniques matter in archaeology      (via sciencedaily.com)     Original source 

Scientists should seek answers hidden in the dirt using proven and state-of-the-art archaeological science techniques to support new discoveries about human evolution following recent controversies at a cave site in Africa, says a group of international experts. Their recommendations follow claims published in June of this year that Homo naledi --a small-brained human species -- buried their dead in Rising Star Cave, South Africa, between 335,000 and 241,000 years ago, and may also have decorated the cave walls with engravings.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Microbiology Geoscience: Geochemistry
Published

Armed to the hilt: Study solves mystery behind bacteria's extensive weaponry      (via sciencedaily.com)     Original source 

A new study tackles the mystery of why bacteria often carry diverse ranges of weapons. The findings show that different weapons are best suited to different competition scenarios. Short-range weapons help bacteria to invade established communities; long-range weapons are useful once established.

Anthropology: Cultures Anthropology: General Archaeology: General Biology: Biochemistry Biology: General Biology: Microbiology
Published

Study of ancient British oral microbiomes reveals shift following Black Death      (via sciencedaily.com)     Original source 

The Second Plague Pandemic of the mid-14th century, also known as the Black Death, killed 30-60 percent of the European population and profoundly changed the course of European history. New research suggests that this plague, potentially through resulting changes in diet and hygiene, may also be associated with a shift in the composition of the human oral microbiome toward one that contributes to chronic diseases in modern-day humans.  

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Clever dosage control mechanism of biallelic genes      (via sciencedaily.com)     Original source 

Researchers have uncovered a mechanism that safeguards the biallelic expression of haploinsufficient genes, shedding light on the importance of having two copies of each chromosome. A study identified the epigenetic regulator MSL2 an 'anti-monoallelic' factor that maintains biallelic gene dosage. This discovery not only reveals a communication system between parental alleles but also points to potential therapeutic strategies for diseases associated with haploinsufficient genes.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

Researchers decipher enzyme scissors of intestinal microbes      (via sciencedaily.com)     Original source 

Fruit and vegetables contain a variety of plant natural products such as flavonoids, which give fruits their colour and are said to have health-promoting properties. Most plant natural products occur in nature as glycosides, i.e. chemical compounds with sugars. In order for humans to absorb the healthy plant natural products, the sugar must be split off in the intestine. Microorganisms in the intestinal flora help to speed up the process. So-called C-glycosides, i.e. plant natural products with a carbon-based bond to a sugar, would even be practically indigestible without the intestinal microbes (e.g. nothofagin in rooibos tea).

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Releasing brakes on biocatalysis      (via sciencedaily.com)     Original source 

Enzymes from microorganisms can produce hydrogen (H2) under certain conditions, which makes them potential biocatalysts for biobased H2 technologies. In order to make this hydrogen production efficient, researchers are trying to identify and eliminate possible limiting factors. These include formaldehyde, which occurs naturally as a metabolic product in cells and inhibits the particularly efficient [FeFe] hydrogenase.