Showing 20 articles starting at article 541

< Previous 20 articles        Next 20 articles >

Categories: Archaeology: General, Biology: Biotechnology

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Engineering viruses to kill deadly pathogens      (via sciencedaily.com)     Original source 

Antimicrobial resistance is an urgent and growing global crisis. Researchers are exploring phages, viruses that infect bacteria, as a possible solution. In the new study, researchers successfully modified DNA from four types of phages to kill a deadly pathogen. The process can also be used to produce more phage variants for further exploration.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General Archaeology: General
Published

Neanderthals and humans lived side by side in Northern Europe 45,000 years ago      (via sciencedaily.com)     Original source 

Archaeologists have debated whether Neanderthals or modern humans made stone tools that are found at sites across northern Europe and date from about 40,000 years ago. A new excavation at one site in Germany turned up 45,000-year-old bone fragments that, when analyzed for mitochondrial DNA, proved to be from Homo sapiens. This is the earliest evidence that modern humans overlapped with Neanderthals in northwest Europe, thousands of years before Neanderthals went extinct.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Using computers to design proteins allows researchers to make tunable hydrogels that can form both inside and outside of cells      (via sciencedaily.com)     Original source 

New research demonstrates a new class of hydrogels that can form not just outside cells, but also inside of them. These hydrogels exhibited similar mechanical properties both inside and outside of cells, providing researchers with a new tool to group proteins together inside of cells.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: General
Published

Asparagus and orchids are more similar than you think      (via sciencedaily.com)     Original source 

How is a beech leaf constructed? What determines the appearance of an asparagus? A new 'encyclopaedia' helps us learn more about the building blocks of plants. The encyclopaedia, probably the largest of its kind, could be used to improve targeted plant breeding efforts, to make them both more climate-resilient and more easily digestible.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

'Genomic time machine' reveals secrets of our DNA      (via sciencedaily.com)     Original source 

Researchers reveal a novel method to uncover bits of our genetic blueprint that come from ancient genetic parasites, offering fresh insights into human evolution and health.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Biology: Zoology
Published

A non-allergenic wheat protein for growing better cultivated meat      (via sciencedaily.com)     Original source 

As the world's population increases, cultivated or lab-grown meat -- animal muscle and fat cells grown in laboratory conditions -- has emerged as a potential way to satisfy future protein needs. And edible, inexpensive plant proteins could be used to grow these cell cultures. Now, researchers report that the non-allergenic wheat protein glutenin successfully grew striated muscle layers and flat fat layers, which could be combined to produce meat-like textures.

Anthropology: Early Humans Anthropology: General Archaeology: General Biology: Evolutionary Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

How did humans learn to walk? New evolutionary study offers an earful      (via sciencedaily.com)     Original source 

A new study, which centers on evidence from skulls of a 6-million-year-old fossil ape, Lufengpithecus, offers important clues about the origins of bipedal locomotion courtesy of a novel method: analyzing its bony inner ear region using three-dimensional CT-scanning. The inner ear appears to provide a unique record of the evolutionary history of ape locomotion.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology Ecology: Sea Life
Published

Researchers map genome for cats, dolphins, birds, and dozens of other animals      (via sciencedaily.com)     Original source 

Researchers mapped genetic blueprints for 51 species including cats, dolphins, kangaroos, penguins, sharks, and turtles, a discovery that deepens our understanding of evolution and the links between humans and animals. The researchers developed novel algorithms and computer software that cut the sequencing time from months -- or decades in the case of the human genome -- to a matter of days.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How macrophages regulate regenerative healing in spiny mice      (via sciencedaily.com)     Original source 

A team of researchers is delving deeper into the science behind how spiny mice can regenerate lost tissue and using what they learn to trigger regeneration in other types of mice -- advances which one day may be translated into humans. Whereas adult laboratory mice heal injuries with scar tissue, spiny mice have the unique ability to regrow lost skin and regenerate musculoskeletal tissues in their body.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How does HIV get into the cell's cenetr to kickstart infection?      (via sciencedaily.com)     Original source 

UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers. UNSW Sydney medical scientists have cracked a mystery whose solution has long eluded researchers.

Anthropology: Cultures Anthropology: General Archaeology: General Geoscience: Geochemistry
Published

New research challenges hunter-gatherer narrative      (via sciencedaily.com)     Original source 

Analysis of the remains of 24 individuals from the Wilamaya Patjxa and Soro Mik'aya Patjxa burial sites in Peru shows that early human diets in the Andes Mountains were composed of 80 percent plant matter and 20 percent meat.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Zoology Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Environmental: Water
Published

Sparrows uniquely adapted to Bay Area marshes are losing their uniqueness      (via sciencedaily.com)     Original source 

How does loss of habitat affect the animals still living there? A genetic study of saltwater-adapted Savannah sparrows around the San Francisco Bay Area shows that the 90% loss of tidal marsh habitat has led to more interbreeding with freshwater-adapted Savannah sparrows, diminishing their genetic adaptation to saltwater, such as enlarged kidneys and larger beak. This could lessen their ability to live in a saltwater habitat.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry
Published

Innovative microscopy technique reveals secrets of lipid synthesis inside cells      (via sciencedaily.com)     Original source 

Researchers have made a pivotal discovery in the field of cellular microscopy. The team has successfully developed Two-Color Infrared Photothermal Microscopy (2C-IPM), a novel technology designed to investigate neutral lipids within lipid droplets of living cells. This new microscopy can be used with isotope labeling, which allows for the detailed monitoring of neutral lipid synthesis within individual lipid droplets.

Archaeology: General Biology: Biochemistry Biology: Evolutionary Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Paleontology: Climate Paleontology: Fossils Paleontology: General
Published

Ancient brown bear genomes sheds light on Ice Age losses and survival      (via sciencedaily.com)     Original source 

The brown bear is one of the largest living terrestrial carnivores, and is widely distributed across the Northern Hemisphere. Unlike many other large carnivores that went extinct at the end of the last Ice Age (cave bear, sabretoothed cats, cave hyena), the brown bear is one of the lucky survivors that made it through to the present. The question has puzzled biologists for close to a century -- how was this so?

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Microbiology
Published

Syphilis-like diseases were widespread in Americas before arrival of Columbus, researchers find      (via sciencedaily.com)     Original source 

Researchers have discovered the genetic material of the pathogen Treponema pallidum in the bones of people who died in Brazil 2,000 years ago. This is the oldest verified discovery of this pathogen thus far, and it proves that humans were suffering from diseases akin to syphilis -- known as treponematoses -- long before Columbus's discovery of America. The new findings call into question previous theories concerning the spread of syphilis by the Spanish conquistadors.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Ecology: Endangered Species Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New study unveils how plants control the production of reactive oxygen species      (via sciencedaily.com)     Original source 

Reactive oxygen species (ROS), though generally regarded as toxic byproducts of biological processes, serve many important functions in plants. However, the precise mechanism that plants use to regulate the production of ROS remains elusive. In a recent study, researchers clarified how an important ROS-generating enzyme is activated, revealing mechanisms likely conserved across all land plants. Their findings could pave the way for breakthroughs in agricultural and environmental remediation tools.