Showing 20 articles starting at article 641

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Paleontology: General

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Important membrane transport mechanism in pathogenic bacteria      (via sciencedaily.com)     Original source 

Some bacterial membrane transporters work almost like freight elevators to transport substances through the cell membrane into the interior of the cell. The transporter itself spans the bacterial membrane. Like a forklift, a soluble protein outside the bacterium transports the substance to the 'elevator' and unloads its cargo there. The freight elevator transports it to the inside of the cell, in other words to another floor.

Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Nature Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Evolution is not as random as previously thought      (via sciencedaily.com)     Original source 

A groundbreaking study has found that evolution is not as unpredictable as previously thought, which could allow scientists to explore which genes could be useful to tackle real-world issues such as antibiotic resistance, disease and climate change. The study challenges the long-standing belief about the unpredictability of evolution, and has found that the evolutionary trajectory of a genome may be influenced by its evolutionary history, rather than determined by numerous factors and historical accidents.

Biology: Biotechnology Biology: Developmental Biology: General Ecology: Animals Offbeat: General Offbeat: Plants and Animals
Published

Advancing the generation of in-vivo chimeric lungs in mice using rat-derived stem cells      (via sciencedaily.com)     Original source 

Creating a functional lung using interspecies chimeric animals is an attractive albeit challenging option for lung transplantation, requiring more research on the viable conditions needed for organ generation. A new study uses reverse-blastocyst complementation and tetraploid-based organ complementation methods to first determine these conditions in lung-deficient mice and then to generate rat-derived lungs in these mice. It provides useful insights on the intrinsic species-specific barriers and factors associated with lung development in interspecies chimeric animals.

Biology: Evolutionary Biology: General Paleontology: Fossils Paleontology: General
Published

The evolution of photosynthesis better documented thanks to the discovery of the oldest thylakoids in fossil cyanobacteria      (via sciencedaily.com)     Original source 

Researchers have identified microstructures in fossil cells that are 1.75 billion years old. These structures, called thylakoid membranes, are the oldest ever discovered. They push back the fossil record of thylakoids by 1.2 billion years and provide new information on the evolution of cyanobacteria which played a crucial role in the accumulation of oxygen on the early Earth.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

A new approach can address antibiotic resistance to Mycobacterium abscessus      (via sciencedaily.com)     Original source 

Scientists have created analogs of the antibiotic spectinomycin that are significantly more effective against these highly resistant bacteria.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Geoscience: Geochemistry
Published

Scientists engineer plant microbiome to protect crops against disease      (via sciencedaily.com)     Original source 

Scientists have engineered the microbiome of plants for the first time, boosting the prevalence of 'good' bacteria that protect the plant from disease. The findings could substantially reduce the need for environmentally destructive pesticides.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Treating tuberculosis when antibiotics no longer work      (via sciencedaily.com)     Original source 

A research team has detected various substances that have a dual effect against tuberculosis: They make the bacteria causing the disease less pathogenic for human immune cells and boost the activity of conventional antibiotics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Nematode proteins shed light on infertility      (via sciencedaily.com)     Original source 

Biologists developed a method for illuminating the intricate interactions of the synaptonemal complex in the nematode C. elegans. The authors identified a trio of protein segments that guide chromosomal interactions, and pinpointed the location where they interact with each other. Their novel method uses a technique known as genetic suppressor screening, which can serve as a blueprint for research on large cellular assemblies that resist traditional structural analysis.

Biology: Developmental Biology: General Biology: Marine Biology: Zoology Ecology: Animals Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

'Giant' predator worms more than half a billion years old discovered in North Greenland      (via sciencedaily.com)     Original source 

Fossils of a new group of animal predators have been located in the Early Cambrian Sirius Passet fossil locality in North Greenland. These large worms may be some of the earliest carnivorous animals to have colonized the water column more than 518 million years ago, revealing a past dynasty of predators that scientists didn't know existed.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

Study reveals clues to how Eastern equine encephalitis virus invades brain cells      (via sciencedaily.com)     Original source 

Researchers have determined how Eastern equine encephalitis virus attaches to a receptor it uses to enter and infect cells. The findings laid the groundwork for a receptor decoy molecule that protects mice from encephalitis caused by the virus.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Bacteria load their syringes      (via sciencedaily.com)     Original source 

Many bacterial pathogens use small injection apparatuses to manipulate the cells of their hosts, such as humans, so that they can spread throughout the body. To do this, they need to fill their syringes with the relevant injection agent. A technique that tracks the individual movement of proteins revealed how bacteria accomplish this challenging task.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New reasons eating less fat should be one of your resolutions      (via sciencedaily.com)     Original source 

A new study to motivate your New Year's resolutions: it demonstrates that high-fat diets negatively impact genes linked not only to obesity, colon cancer and irritable bowels, but also to the immune system and brain function.

Biology: General Biology: Zoology Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

'Juvenile T. rex' fossils are a distinct species of small tyrannosaur      (via sciencedaily.com)     Original source 

A new analysis of fossils believed to be juveniles of T. rex now shows they were adults of a small tyrannosaur, with narrower jaws, longer legs, and bigger arms than T. rex. The species, Nanotyrannus lancensis, was first named decades ago but later reinterpreted as a young T. rex. The new study shows Nanotyrannus was a smaller, longer-armed relative of T. rex, with a narrower snout.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Big impacts from small changes in cell      (via sciencedaily.com)     Original source 

Tiny things matter -- for instance, one amino acid can completely alter the architecture of the cell. Researchers have now investigated the structure and mechanics of the main component of the cytoskeleton of the cell: a protein known as actin. Actin is found in all living cells where it has a range of important functions -- from muscle contraction to cell signalling and cell shape. This protein comes in two different varieties termed 'isoforms', which are known as gamma actin and beta actin.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular Biology: Zoology Ecology: Sea Life
Published

How jellyfish regenerate functional tentacles in days      (via sciencedaily.com)     Original source 

At about the size of a pinkie nail, the jellyfish species Cladonema can regenerate an amputated tentacle in two to three days -- but how? Regenerating functional tissue across species, including salamanders and insects, relies on the ability to form a blastema, a clump of undifferentiated cells that can repair damage and grow into the missing appendage. Jellyfish, along with other cnidarians such as corals and sea anemones, exhibit high regeneration abilities, but how they form the critical blastema has remained a mystery until now.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

Researchers map how measles virus spreads in human brain      (via sciencedaily.com)     Original source 

Researchers mapped how the measles virus mutated and spread in the brain of a person who succumbed to a rare, lethal brain disease. New cases of this disease, which is a complication of the measles virus, may occur as measles reemerges among the unvaccinated, say researchers.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

GPCR structure: Research reveals molecular origins of function for a key drug target      (via sciencedaily.com)     Original source 

Scientists reveal how G protein-coupled receptors, major therapeutic drug targets, decode critical properties of their ligands.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

New tool unifies single-cell data      (via sciencedaily.com)     Original source 

A new methodology that allows for the categorization and organization of single-cell data has been launched. It can be used to create a harmonized dataset for the study of human health and disease.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Location, location, location: The hidden power of intracellular neighborhoods      (via sciencedaily.com)     Original source 

New findings provide details about the hidden organization of the cytoplasm, showing it makes a big difference where in that cellular broth that messenger RNA (mRNA) get translated into proteins. The findings hold promise for increasing or altering the production of proteins in mRNA vaccines and therapies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

The future of canine stem cell therapy: unprecedented, painless, and feeder-free      (via sciencedaily.com)     Original source 

Scientists have developed an efficient, non-invasive, and pain-free method to generate canine-induced pluripotent stem cells (iPSCs). They identified six reprogramming genes that can boost canine iPSC generation by 120 times compared to conventional methods using fibroblasts. The iPSCs were created from urine-derived cells without the need for feeder cells, an impossible feat until now. Their findings are expected to advance regenerative medicine and genetic disease research in veterinary medicine.