Showing 20 articles starting at article 721

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Paleontology: General

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

Tracing the evolution of the 'little brain'      (via sciencedaily.com)     Original source 

The evolution of higher cognitive functions in humans has so far mostly been linked to the expansion of the neocortex. Researchers are increasingly realizing, however, that the 'little brain' or cerebellum also expanded during evolution and probably contributes to the capacities unique to humans. A research team has now generated comprehensive genetic maps of the development of cells in the cerebella of human, mouse and opossum. Comparisons of these maps reveal both ancestral and species-specific cellular and molecular characteristics of cerebellum development.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Nano-sized cell particles are promising intervention tool in treating infectious diseases      (via sciencedaily.com)     Original source 

Extracellular vesicles were found to inhibit the viral infection of COVID-19 and potentially other infectious diseases.

Biology: Evolutionary Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: General
Published

How shifting climates may have shaped early elephants' trunks      (via sciencedaily.com)     Original source 

Researchers have provided new insights into how ancestral elephants developed their dextrous trunks.  A study of the evolution of longirostrine gomphotheres, an ancestor of the modern day elephant, suggests moving into open-land grazing helped develop their coiling and grasping trunks.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

New clues into the head-scratching mystery of itch      (via sciencedaily.com)     Original source 

Scientists show for the first time that bacteria can cause itch by activating nerve cells in the skin. The findings can inform new therapies to treat itch that occurs in inflammatory skin conditions like eczema and dermatitis.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Nutrient found in beef and dairy improves immune response to cancer      (via sciencedaily.com)     Original source 

Trans-vaccenic acid (TVA), a long-chain fatty acid found in meat and dairy products from grazing animals such as cows and sheep, improves the ability of CD8+ T cells to infiltrate tumors and kill cancer cells, according to a new study.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Team discovers rules for breaking into Pseudomonas      (via sciencedaily.com)     Original source 

Researchers report that they have found a way to get antibacterial drugs through the nearly impenetrable outer membrane of Pseudomonas aeruginosa, a bacterium that -- once it infects a person -- is notoriously difficult to treat.

Biology: General Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

Trilobites rise from the ashes to reveal ancient map      (via sciencedaily.com)     Original source 

Ten newly discovered species of trilobites, hidden for 490 million years in a little-studied part of Thailand, could be the missing pieces in an intricate puzzle of ancient world geography.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Laser-powered 'tweezers' reveal universal mechanism viruses use to package up DNA      (via sciencedaily.com)     Original source 

Researchers have used laser-powered ‘optical tweezers’ to reveal a universal motor mechanism used by viruses for packaging their DNA into infectious particles.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Microbiology
Published

Researchers shed light on how one deadly pathogen makes its chemicals      (via sciencedaily.com)     Original source 

Investigators have played a key role in deciphering a previously unidentified cluster of genes responsible for producing sartorypyrones, a chemical made by the fungal pathogen Aspergillus fumigatus, whose family causes Aspergillosis in humans.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Unearthing how a carnivorous fungus traps and digests worms      (via sciencedaily.com)     Original source 

A new analysis sheds light on the molecular processes involved when a carnivorous species of fungus known as Arthrobotrys oligospora senses, traps and consumes a worm.

Biology: Biochemistry Biology: Biotechnology Biology: General
Published

New approaches in the fight against drug resistance in malaria      (via sciencedaily.com)     Original source 

Malaria is one of the most widespread and deadly infectious diseases worldwide. New compounds are continuously required due to the risk of malaria parasites becoming resistant to the medicines currently used. A team of researchers has now combined the anti-malaria drug artemisinin with coumarin, which, like artemisinin, is also found in plants, and developed an auto-fluorescent compound from both bioactive substances.

Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Geology Geoscience: Oceanography Geoscience: Severe Weather Paleontology: Climate Paleontology: General
Published

Deep dive on sea level rise: New modelling gives better predictions on Antarctic ice sheet melt      (via sciencedaily.com)     Original source 

Using historical records from around Australia, an international team of researchers have put forward the most accurate prediction to date of past Antarctic ice sheet melt, providing a more realistic forecast of future sea level rise.   The Antarctic ice sheet is the largest block of ice on earth, containing over 30 million cubic kilometers of water.   Hence, its melting could have a devasting impact on future sea levels. To find out just how big that impact might be, the research team turned to the past.  

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Zoology Ecology: Nature Geoscience: Geography
Published

Scientists have solved the damselfly color mystery      (via sciencedaily.com)     Original source 

For over 20 years, a research team has studied the common bluetail damselfly. Females occur in three different color forms -- one with a male-like appearance, something that protects them from mating harassment. In a new study, an international research team found that this genetic color variation that is shared between several species arose through changes in a specific genomic region at least five million years ago.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Heart repair via neuroimmune crosstalk      (via sciencedaily.com)     Original source 

Unlike humans, zebrafish can completely regenerate their hearts after injury. They owe this ability to the interaction between their nervous and immune systems, as researchers now report.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

New method to help with analysis of single cell data      (via sciencedaily.com)     Original source 

CITE-seq (cellular indexing of transcriptomes and epitopes) is an RNA sequencing-based method that simultaneously quantifies cell surface protein and transcriptomic data within a single cell readout. The ability to study cells concurrently offers unprecedented insights into new cell types, disease states or other conditions.   While CITE-seq solves the problem of detecting a limited number of proteins while using single-cell sequencing in an unbiased way, one of its limitations is the high levels of background noise that can hinder analysis.