Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Offbeat: Computers and Math
Published How to make aging a 'fairer game' for all wormkind



Researchers have discovered a new fundamental mechanism governing the rules of ageing in worms. The researchers were able to manipulate the mechanism through genetic interventions which dramatically extend not just the lifespan of the worms, but also their health-span. In other words, trading weak, frail old age with vigorous golden years -- all without altering their diet, environment or other external factors.
Published Can AI learn like us?



Scientists have developed a new, more energy-efficient way for AI algorithms to process data. His model may become the basis for a new generation of AI that learns like we do. Notably, these findings may also lend support to neuroscience theories surrounding memory's role in learning.
Published Researchers leverage shadows to model 3D scenes, including objects blocked from view



A new technique can model an entire 3D scene, including areas hidden from view, from just one camera image. The method relies on image shadows, which provide information about the geometry and location of hidden objects.
Published Odors are encoded in rings in the brain of migratory locusts



Researchers describe how odors are encoded in the antennal lobe, the olfactory center in the brain of migratory locusts. Using transgenic locusts and imaging techniques, the researchers were able to show a ring-shaped representation of odors in the brain. The pattern of olfactory coding in the antennal lobe is the same at all stages of locust development. A better understanding of olfactory coding in the locust brain should help to learn more about how the behavior of these insects is controlled, especially their swarming.
Published Breakthrough may clear major hurdle for quantum computers



The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.
Published Where to put head and tail?



Formation of the body axes is a critical part of embryonic development. They guarantee that all body parts end up where they belong and that no ears grow on our backs. The head-tail axis, for example, determines the orientation of the two ends of the body. It was previously assumed that this axis is largely determined by the interplay between the Nodal and BMP signals. However, there appears to be another player in this system, as researchers have now discovered by using an embryo-like model system they developed. In the absence of BMP, the signalling molecule beta-catenin takes on the role of the Nodal antagonist. This new mechanism could be a flexible solution for axis formation in embryos with different shapes.
Published Researchers teach AI to spot what you're sketching



A new way to teach artificial intelligence (AI) to understand human line drawings -- even from non-artists -- has been developed.
Published Vitamin B6: New compound delays degradation



A low vitamin B6 level has negative effects on brain performance. A research team has now found a way to delay the degradation of the vitamin.
Published The genetic 'switches' of bone growth



In mammals, only 3% of the genome consists of coding genes which, when transcribed into proteins, ensure the biological functions of the organism and the in-utero development of future individuals. But genes do not function alone. They are controlled by other sequences in the genome, called enhancers, which, like switches, activate or deactivate them as required. A team has now identified and located 2700 enhancers -- among millions of non-coding genetic sequences -- that precisely regulate the genes responsible for bone growth. This discovery sheds light on one of the major factors influencing the size of individuals in adulthood, and explains why their failure could be the cause of certain bone malformations.
Published Scientists preserve DNA in an amber-like polymer



With their 'T-REX' method, researchers developed a glassy, amber-like polymer that can be used for long-term storage of DNA, such as entire human genomes or digital files such as photos.
Published Modifying genomes of tardigrades to unravel their secrets



Some species of tardigrades are highly and unusually resilient to various extreme conditions fatal to most other forms of life. The genetic basis for these exceptional abilities remains elusive. Researchers have now successfully edited genes using the CRISPR technique in a highly resilient tardigrade species previously impossible to study with genome-editing tools. The successful delivery of CRISPR to an asexual tardigrade species directly produces gene-edited offspring. The design and editing of specific tardigrade genes allow researchers to investigate which are responsible for tardigrade resilience and how such resilience can work.
Published Swimming microrobots deliver cancer-fighting drugs to metastatic lung tumors in mice



Engineers have developed microscopic robots, known as microrobots, capable of swimming through the lungs to deliver cancer-fighting medication directly to metastatic tumors. This approach has shown promise in mice, where it inhibited the growth and spread of tumors that had metastasized to the lungs, thereby boosting survival rates compared to control treatments.
Published To heal skin, scientists invent living bioelectronics



Engineers have created a patch that combines sensors and bacteria to interact with the body.
Published Towards a new era in flexible piezoelectric sensors for both humans and robots



Flexible piezoelectric sensors are essential to monitor the motions of both humans and humanoid robots. However, existing designs are either are costly or have limited sensitivity. In a recent study, researchers tackled these issues by developing a novel piezoelectric composite material made from electrospun polyvinylidene fluoride nanofibers combined with dopamine. Sensors made from this material showed significant performance and stability improvements at a low cost, promising advancements in medicine, healthcare, and robotics.
Published AI-powered simulation training improves human performance in robotic exoskeletons



Researchers have demonstrated a new method that leverages artificial intelligence (AI) and computer simulations to train robotic exoskeletons to autonomously help users save energy while walking, running and climbing stairs.
Published New technique reveals earliest signs of genetic mutations



Mutations are changes in the molecular 'letters' that make up the DNA code, the blueprint for all living cells. Some of these changes can have little effect, but others can lead to diseases, including cancer. Now, a new study introduces an original technique, called HiDEF-seq, that can accurately detect the early molecular changes in DNA code that precede mutations.
Published 3D-printed mini-actuators can move small soft robots, lock them into new shapes



Researchers have demonstrated miniature soft hydraulic actuators that can be used to control the deformation and motion of soft robots that are less than a millimeter thick. The researchers have also demonstrated that this technique works with shape memory materials, allowing users to repeatedly lock the soft robots into a desired shape and return to the original shape as needed.
Published Scientists engineer yellow-seeded camelina with high oil output



Using tools of modern genetics, plant biochemists have produced a new high-yielding oilseed crop variety -- a yellow-seeded variety of Camelina sativa, a close relative of canola, that accumulates 21.4% more oil than ordinary camelina.
Published Virus-like nanoparticles control the multicellular organization and reproduction of host bacteria



Researchers have discovered that virus-like nanoparticles can promote the multicellular organization and reproduction of host bacteria. These particles, which are evolutionarily related to phages (viruses that infect bacteria), contain an enzyme that helps shape the multicellular architecture and ultimately enhances morphological differentiation.
Published Algae offer real potential as a renewable electricity source



The need to transition away from fossil fuels to more sustainable energy production is critical. That's why a team of researchers is looking at a potential power source that not only produces no carbon emissions but removes carbon as it works: algae.