Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology, Chemistry: Biochemistry
Published Machine learning approach helps researchers design better gene-delivery vehicles for gene therapy



Gene therapy could potentially cure genetic diseases but it remains a challenge to package and deliver new genes to specific cells safely and effectively. Existing methods of engineering one of the most commonly used gene-delivery vehicles, adeno-associated viruses (AAV), are often slow and inefficient. Now, researchers have developed a machine-learning approach that promises to speed up AAV engineering for gene therapy. The tool helps researchers engineer the protein shells of AAVs, called capsids, to have multiple desirable traits, such as the ability to deliver cargo to a specific organ but not others or to work in multiple species. Other methods only look for capsids that have one trait at a time.
Published Bacteria encode hidden genes outside their genome--do we?



A 'loopy' discovery in bacteria is raising fundamental questions about the makeup of our own genome -- and revealing a potential wellspring of material for new genetic therapies.
Published Researchers develop AI model that predicts the accuracy of protein--DNA binding



A new artificial intelligence model can predict how different proteins may bind to DNA.
Published Increasing solid-state electrolyte conductivity and stability using helical structure



Solid-state electrolytes have been explored for decades for use in energy storage systems and in the pursuit of solid-state batteries. These materials are safer alternatives to the traditional liquid electrolyte -- a solution that allows ions to move within the cell -- used in batteries today. However, new concepts are needed to push the performance of current solid polymer electrolytes to be viable for next generation materials.
Published Engineering researchers enhance perovskite solar cells durability with first-of-its-kind chiral-structured 'springy' interface



A research team has constructed an unprecedented chiral-structured interface in perovskite solar cells, which enhances the reliability and power conversion efficiency of this fast-advancing solar technology and accelerates its commercialization.
Published How do butterflies stick to branches during metamorphosis?



Most of us learned about butterfly metamorphosis as a kid -- a wriggly caterpillar molts its skin to form a tough chrysalis and emerges as a beautiful butterfly. But how exactly do chrysalises stay anchored as the butterfly brews within? Research shows that, despite their silks being weak and thin on their own, caterpillars can expertly spin them into chrysalis support structures resembling hook-and-loop fasteners and multi-strand safety tethers.
Published 3D laser printing with bioinks from microalgae



Microalgae such as the diatom Odontella aurita and the green alga Tetraselmis striata are especially suitable as 'biofactories' for the production of sustainable materials for 3D laser printing due to their high content in lipids and photoactive pigments. An international research team has succeeded for the first time in manufacturing inks for printing complex biocompatible 3D microstructures from the raw materials extracted from the microalgae.
Published Researchers make breakthrough in understanding species abundance



The key finding was that temperature and genome size, not body size, had the greatest influence on the maximum population growth rate of the diatoms. Yet body size still mattered in colder latitudes, conserving Bermann's Rule.
Published New technology uses light to engrave erasable 3D images



Researchers invented a technique that uses a specialized light projector and a photosensitive chemical additive to imprint two- and three-dimensional images inside any polymer. The light-based engraving remains in the polymer until heat or light are applied, which erases the image and makes it ready to use again. The technology is intended for any situation where having detailed, precise visual data in a compact and easily customizable format could be critical, such as planning surgeries and developing architectural designs.
Published Researchers crack a key celiac mystery



An interdisciplinary team of medical and engineering researchers has spent the last six years working to unlock a significant piece of the puzzle in the search for a cure: how and where the gluten response begins.
Published Finding pearls in the mud: Eco-friendly tungsten recovery from semiconductor waste



Semiconductor industry waste is typically seen as a costly disposal problem and an environmental hazard. But what if this waste could be transformed into a valuable resource? In an exciting development, researchers have unveiled an eco-friendly method to extract rare metals from semiconductor waste. This innovative approach not only recovers precious tungsten but also assesses its economic viability, offering a sustainable solution for waste management in the tech industry.
Published 3D bioprinting advances research on respiratory viruses



Researchers develop a microstructured 'artificial lung' model using bioprinting technology.
Published Imaging technique uncovers protein abnormality in motor neurone disease



Researchers have used a new technique to identify pathological abnormalities associated with motor neurone disease.
Published Microscopy technique 'paves way' for improving understanding of cellular functions



Scientists have developed a new way of counting labelled proteins in living cells that could become a standard and valuable tool in the field of biomedical research.
Published Artificial compound eye to revolutionize robotic vision at lower cost but higher sensitivity



A research team has recently developed a novel artificial compound eye system that is not only more cost-effective, but demonstrates a sensitivity at least twice that of existing market products in small areas. The system promises to revolutionize robotic vision, enhance robots' abilities in navigation, perception and decision-making, while promoting commercial application and further development in human-robot collaboration.
Published Breakthrough in molecular control: New bioinspired double helix with switchable chirality



The control of artificial double-helical structures, which are essential for the development of high-order molecular systems, remains difficult. In a new study, researchers have developed novel double-helical monometallofoldamers that exhibit controllable helicity inversion and chiral information transfer, in response to external stimuli. These monometallofoldamers can lead to novel artificial supramolecular systems for molecular information transmission, amplification, replication, and other exciting applications in various fields of technology.
Published Glimpse into the nanoworld: Microscope reveals tiniest cell processes



What does the inside of a cell really look like? In the past, standard microscopes were limited in how well they could answer this question. Now, researchers have succeeded in developing a microscope with resolutions better than five nanometers (five billionths of a meter). This is roughly equivalent to the width of a hair split into 10,000 strands.
Published Mix of factors prompts owl monkeys to leave their parents



There comes a point in the lives of young owl monkeys when they leave their parents and strike out on their own to find a mate. In a new study of a wild population of Azara's owl monkeys in northern Argentina, researchers reveal that a combination of social and ecological factors influences when these tree-dwelling monkeys peel away from their parents and siblings. According to their findings -- which were based on 25 years of genetic and demographic data for several generations of owl monkeys, covering more than 330 individuals -- none of the individuals, regardless of their sex, reproduced in the same group where they were born. In all cases, the researchers found, the animals either departed from their natal group or died before reproducing.
Published How ribosomes in our cells enable protein folding



Scientists discovered a role played by ribosomes during the folding of new proteins in cells.
Published Viral defense protein speeds up female stem cell production



A viral defense mechanism can be used to accelerate the creation of female stem cell lines in mice. The findings can boost efforts in medical research, drug testing, and regenerative therapies, particularly for women and individuals with two X chromosomes.