Showing 20 articles starting at article 121

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology

Return to the site home page

Anthropology: Cultures Anthropology: Early Humans Anthropology: General Archaeology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Ecology: Research Paleontology: Fossils
Published

Ancient dingo DNA shows modern dingoes share little ancestry with modern dog breeds      (via sciencedaily.com)     Original source 

A study of ancient dingo DNA revealed that the distribution of modern dingoes across Australia, including those on K'gari (formerly Fraser Island), pre-dates European colonization and interventions like the dingo-proof fence.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry
Published

New bio-based tool quickly detects concerning coronavirus variants      (via sciencedaily.com)     Original source 

Researchers have developed a bioelectric device that can detect and classify new variants of coronavirus to identify those that are most harmful. It has the potential to do the same with other viruses, as well.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Ecology: Trees
Published

Genomic data integration improves prediction accuracy of apple fruit traits      (via sciencedaily.com)     Original source 

Genotyping techniques can be used to select fruit trees with desired traits at the seedling stage, increasing the efficiency of fruit tree breeding. However, so far, there are multiple different genotyping systems, each generating distinct datasets. In a recent study, Japanese scientists revealed that integrating genomic data obtained with different genotyping systems can effectively combine with historical data, leveraging the accuracy of genomic predictions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Visualizing short-lived intermediate compounds produced during chemical reactions      (via sciencedaily.com)     Original source 

Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

GeneMAP discovery platform will help define functions for 'orphan' metabolic proteins      (via sciencedaily.com)     Original source 

Researchers have developed a discovery platform to probe the function of genes involved in metabolism -- the sum of all life-sustaining chemical reactions. The investigators used the new platform, called GeneMAP (Gene-Metabolite Association Prediction), to identify a gene necessary for mitochondrial choline transport.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

Not so selfish after all: Viruses use freeloading genes as weapons      (via sciencedaily.com)     Original source 

Certain pieces of DNA have been labeled as 'selfish genetic elements' due to notions that they don't contribute to a host organism's survival. Instead, researchers have now discovered that these elements have been weaponized and play a crucial role by cutting off a competitor's ability to reproduce.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Never-before-seen view of gene transcription captured      (via sciencedaily.com)     Original source 

New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

A new breakthrough in understanding regeneration in a marine worm      (via sciencedaily.com)     Original source 

The sea worm Platynereis dumerilii is only a few centimeters long but has a remarkable ability: in just a few days, it can regenerate entire parts of its body after an injury or amputation. By focusing more specifically on the mechanisms at play in the regeneration of this worm's tail, a research team has observed that gut cells play a role in the regeneration of the intestine as well as other tissues such as muscle and epidermis.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Research shows how RNA 'junk' controls our genes      (via sciencedaily.com)     Original source 

Researchers have made a significant advance in understanding how genes are controlled in living organisms. The new study focuses on critical snippets of RNA in the tiny, transparent roundworm Caenorhabditis elegans (C. elegans). The study provides a detailed map of the 3'UTR regions of RNA in C. elegans. 3'UTRs (untranslated regions) are segments of RNA involved in gene regulation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Proteins and fats can drive insulin production for some, paving way for tailored nutrition      (via sciencedaily.com)     Original source 

When it comes to managing blood sugar levels, most people think about counting carbs. But new research shows that, for some, it may be just as important to consider the proteins and fats in their diet. The study is the first large-scale comparison of how different people produce insulin in response to each of the three macronutrients: carbohydrates (glucose), proteins (amino acids) and fats (fatty acids). The findings reveal that production of the blood sugar-regulating hormone is much more dynamic and individualized than previously thought, while showing for the first time a subset of the population who are hyper-responsive to fatty foods.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Zoology Ecology: Animals
Published

Genetic patterns of world's farmed, domesticated foxes revealed via historical deep-dive      (via sciencedaily.com)     Original source 

Domesticated animals play a prominent role in our society, with two-thirds of American families enjoying the companionship of pets and many others relying on animal products for their nutritional needs. But the process of domestication remains a bit of a mystery.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Degradation of cell wall key in the spread of antibiotic resistance      (via sciencedaily.com)     Original source 

A study provides new clues in the understanding of how antibiotic resistance spreads. The study shows how an enzyme breaks down the bacteria's protective outer layer, the cell wall, and thus facilitates the transfer of genes for resistance to antibiotics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers thwart resistant bacteria's strategy      (via sciencedaily.com)     Original source 

Bacteria are experts at evolving resistance to antibiotics. One resistance strategy is to cover their cell walls in sticky and gooey biofilm that antibiotics cannot penetrate. A new discovery could put a stop to this strategy.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Mathematics: Modeling
Published

New deep-learning model outperforms Google AI system in predicting peptide structures      (via sciencedaily.com)     Original source 

Researchers have developed a deep-learning model, called PepFlow, that can predict all possible shapes of peptides -- chains of amino acids that are shorter than proteins, but perform similar biological functions. Peptides are known to be highly flexible, taking on a wide range of folding patterns, and are thus involved in many biological processes of interest to researchers in the development of therapeutics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Potent therapy candidate for fatal prion diseases      (via sciencedaily.com)     Original source 

Scientists have developed a gene-silencing tool that shows promise as a therapy against fatal prion diseases. The tool, a streamlined epigenetic editor, paves the way for a new class of genetic approaches to treat certain diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New, holistic way to teach synthetic biology      (via sciencedaily.com)     Original source 

Synthetic biology combines principles from science, engineering and social science, creating emerging technologies such as alternative meats and mRNA vaccines; Deconstructing synthetic biology across scales gives rise to new approach to uniting traditional disciplines; Case studies offer a modular, accessible approach to teaching at different institutions.

Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: General Biology: Zoology Ecology: Animals Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Researchers find genetic stability in a long-term Panamanian hybrid zone of manakin birds      (via sciencedaily.com)     Original source 

We often think of species as separate and distinct, but sometimes they can interbreed and create hybrids. When this happens consistently in a specific area, it forms what's known as a hybrid zone. These zones can be highly dynamic or remarkably stable, and studying them can reveal key insights into how species boundaries evolve -- or sometimes blur. Researchers now describe a hybrid zone between two manakin species in Panama that has overall remained relatively stable over the past 30 years.