Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Biology: Biotechnology
Published Scientists discover genetic 'off switch' in legume plants that limits biological ability to source nutrients (via sciencedaily.com) Original source
A genetic 'off switch' that shuts down the process in which legume plants convert atmospheric nitrogen into nutrients has been identified for the first time by a team of international scientists.
Published Cell division: Before commitment, a very long engagement (via sciencedaily.com) Original source
Before a cell commits fully to the process of dividing itself into two new cells, it may ensure the appropriateness of its commitment by staying for many hours -- sometimes more than a day -- in a reversible intermediate state, according to a new discovery. Their revelation of this fundamental feature of biology includes details of its mechanisms and dynamics, which may inform the development of future therapies targeting cancers and other diseases.
Published New tool enables faster, more cost-effective genome editing of traits to improve agriculture sustainability (via sciencedaily.com) Original source
New research had the goal of reducing the time and cost it takes to bring an improved crop to the marketplace to improve agriculture sustainability.
Published Unlocking the world of bacteria (via sciencedaily.com) Original source
Bacteria possess unique traits with great potential for benefiting society. However, current genetic engineering methods to harness these advantages are limited to a small fraction of bacterial species. A team has now introduced a novel approach that can make many more bacteria amenable to genetic engineering. Their method, called IMPRINT, uses cell-free systems to enhance DNA transformation across various bacterial strains.
Published The on-and-off affair in DNA (via sciencedaily.com) Original source
Researchers have discovered that in thale cresses histone H3 lysine-9 (H3K9) methylation, conventionally thought to be a mark of turning off gene transcription, can also turn on gene expression via the interactions of two other proteins and histone marks. The molecular mechanisms demonstrate that rather than functioning as a simple 'off switch,' H3K9 methylation is more like a 'dimmer switch' that fine-tunes DNA transcription. The discovery suggests there might be similar mechanisms in other organisms, too.
Published Slipping a note to a neighbor: The cellular way (via sciencedaily.com) Original source
Study reveals how drug molecules bind in channels between neighboring cells, changing intercellular communication.
Published Towards non-toxic antifouling agents: A novel method for total synthesis of scabrolide F (via sciencedaily.com) Original source
Norcembranolide diterpenes, isolated from the soft corals of the genus Sinularia, are important compounds for the development of new drugs, owing to their diverse biological activities. However, total synthesis methods for these compounds are scarce. Now, a team of researchers has achieved the total synthesis of scabrolide F, a norcembranolide diterpene. They also revealed its non-toxic antifouling properties. This novel method can lead to the development of new drugs and antifouling agents.
Published Rewriting the armadillo family tree: A new species, plus a name change for the state mammal of Texas (via sciencedaily.com) Original source
The nine-banded armadillo, which ranges all the way from Argentina to Nebraska, is actually four separate species. One of the species, the Guianan long-nosed armadillo, is new to science. Meanwhile, the species that has migrated from Mexico to the United States (and is the official small mammal of Texas) is now called the Mexican long-nosed armadillo.
Published Zebrafish reveal how bioelectricity shapes muscle development (via sciencedaily.com) Original source
New research describes how nerve cells and muscle cells communicate through electrical signals during development -- a phenomenon known as bioelectricity. The communication, which takes place via specialized channels between cells, is vital for proper development and behavior. The study identifies specific genes that control the process, and pins down what happens when it goes wrong. The finding offers clues to the genetic origins of muscle disorders in humans.
Published Discovery of vast sex differences in cellular activity has major implications for disease treatment (via sciencedaily.com) Original source
The study reveals vast differences in gene activity within the mitochondria of males compared to females. This is the first study to test effects of all 37 genes in the mitochondrial genome -- genes that copepods and humans share. The study found that males demonstrate more activity across all protein-coding mitochondrial genes than females. Although the study looks at tiny marine organisms called copepods, the findings have weighty implications for human medicine.
Published Removal of excess chloride ions by plants when subjected to salt stress (via sciencedaily.com) Original source
Researchers have discovered a salt adaptation mechanism in plants that facilitates chloride removal from the roots and enhancing salinity tolerance. A research team has uncovered a novel mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of a specific chloride channel protein, AtCLCf.
Published How cells boost gene expression (via sciencedaily.com) Original source
The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins -- yet it exists in large quantities. A research team has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a 'superhighway' in cell transport and thus accelerates gene expression.
Published How to make aging a 'fairer game' for all wormkind (via sciencedaily.com) Original source
Researchers have discovered a new fundamental mechanism governing the rules of ageing in worms. The researchers were able to manipulate the mechanism through genetic interventions which dramatically extend not just the lifespan of the worms, but also their health-span. In other words, trading weak, frail old age with vigorous golden years -- all without altering their diet, environment or other external factors.
Published Odors are encoded in rings in the brain of migratory locusts (via sciencedaily.com) Original source
Researchers describe how odors are encoded in the antennal lobe, the olfactory center in the brain of migratory locusts. Using transgenic locusts and imaging techniques, the researchers were able to show a ring-shaped representation of odors in the brain. The pattern of olfactory coding in the antennal lobe is the same at all stages of locust development. A better understanding of olfactory coding in the locust brain should help to learn more about how the behavior of these insects is controlled, especially their swarming.
Published Where to put head and tail? (via sciencedaily.com) Original source
Formation of the body axes is a critical part of embryonic development. They guarantee that all body parts end up where they belong and that no ears grow on our backs. The head-tail axis, for example, determines the orientation of the two ends of the body. It was previously assumed that this axis is largely determined by the interplay between the Nodal and BMP signals. However, there appears to be another player in this system, as researchers have now discovered by using an embryo-like model system they developed. In the absence of BMP, the signalling molecule beta-catenin takes on the role of the Nodal antagonist. This new mechanism could be a flexible solution for axis formation in embryos with different shapes.
Published Vitamin B6: New compound delays degradation (via sciencedaily.com) Original source
A low vitamin B6 level has negative effects on brain performance. A research team has now found a way to delay the degradation of the vitamin.
Published The genetic 'switches' of bone growth (via sciencedaily.com) Original source
In mammals, only 3% of the genome consists of coding genes which, when transcribed into proteins, ensure the biological functions of the organism and the in-utero development of future individuals. But genes do not function alone. They are controlled by other sequences in the genome, called enhancers, which, like switches, activate or deactivate them as required. A team has now identified and located 2700 enhancers -- among millions of non-coding genetic sequences -- that precisely regulate the genes responsible for bone growth. This discovery sheds light on one of the major factors influencing the size of individuals in adulthood, and explains why their failure could be the cause of certain bone malformations.
Published Scientists preserve DNA in an amber-like polymer (via sciencedaily.com) Original source
With their 'T-REX' method, researchers developed a glassy, amber-like polymer that can be used for long-term storage of DNA, such as entire human genomes or digital files such as photos.
Published Modifying genomes of tardigrades to unravel their secrets (via sciencedaily.com) Original source
Some species of tardigrades are highly and unusually resilient to various extreme conditions fatal to most other forms of life. The genetic basis for these exceptional abilities remains elusive. Researchers have now successfully edited genes using the CRISPR technique in a highly resilient tardigrade species previously impossible to study with genome-editing tools. The successful delivery of CRISPR to an asexual tardigrade species directly produces gene-edited offspring. The design and editing of specific tardigrade genes allow researchers to investigate which are responsible for tardigrade resilience and how such resilience can work.
Published New technique reveals earliest signs of genetic mutations (via sciencedaily.com) Original source
Mutations are changes in the molecular 'letters' that make up the DNA code, the blueprint for all living cells. Some of these changes can have little effect, but others can lead to diseases, including cancer. Now, a new study introduces an original technique, called HiDEF-seq, that can accurately detect the early molecular changes in DNA code that precede mutations.