Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Anthropology: Cultures, Space: Astrophysics
Published Baby quasars: Growing supermassive black holes



The James Webb Space Telescope makes one of the most unexpected findings within its first year of service: A high number of faint little red dots in the distant Universe could change the way we understand the genesis of supermassive black holes.
Published Finding new physics in debris from colliding neutron stars



Neutron star mergers are a treasure trove for new physics signals, with implications for determining the true nature of dark matter, according to physicists.
Published Astronomers spot oldest 'dead' galaxy yet observed



A galaxy that suddenly stopped forming new stars more than 13 billion years ago has been observed by astronomers. Using the James Webb Space Telescope, astronomers have spotted a 'dead' galaxy when the universe was just 700 million years old, the oldest such galaxy ever observed.
Published Discovery tests theory on cooling of white dwarf stars



Open any astronomy textbook to the section on white dwarf stars and you'll likely learn that they are 'dead stars' that continuously cool down over time. Astronomers are challenging this theory after discovering a population of white dwarf stars that stopped cooling for more than eight billion years.
Published Groundbreaking survey reveals secrets of planet birth around dozens of stars



A team of astronomers has shed new light on the fascinating and complex process of planet formation. The research brings together observations of more than 80 young stars that might have planets forming around them, providing astronomers with a wealth of data and unique insights into how planets arise in different regions of our galaxy.
Published What makes black holes grow and new stars form? Machine learning helps solve the mystery



It takes more than a galaxy merger to make a black hole grow and new stars form: machine learning shows cold gas is needed too to initiate rapid growth -- new research finds.
Published Webb unlocks secrets of one of the most distant galaxies ever seen



Looking deeply into space and time, astronomers have studied the exceptionally luminous galaxy GN-z11, which existed when our 13.8 billion-year-old universe was only about 430 million years old.
Published New insights on how galaxies are formed



Astronomers can use supercomputers to simulate the formation of galaxies from the Big Bang 13.8 billion years ago to the present day. But there are a number of sources of error. An international research team has spent a hundred million computer hours over eight years trying to correct these.
Published Ultraviolet radiation from massive stars shapes planetary systems



Up to a certain point, very luminous stars can have a positive effect on the formation of planets, but from that point on the radiation they emit can cause the material in protoplanetary discs to disperse.
Published Scientists ID burned bodies using technique used for extracting DNA from woolly mammoths, Neanderthals



A technique originally devised to extract DNA from woolly mammoths and other ancient archaeological specimens can be used to potentially identify badly burned human remains, according to research.
Published Astronomers measure heaviest black hole pair ever found



Using archival data from the Gemini North telescope, a team of astronomers has measured the heaviest pair of supermassive black holes ever found. The merging of two supermassive black holes is a phenomenon that has long been predicted, though never observed. This massive pair gives clues as to why such an event seems so unlikely in the Universe.
Published Astronomers discover heavy elements after bright gamma-ray burst from neutron star merger



An international team of astronomers obtained observational evidence for the creation of rare heavy elements in the aftermath of a cataclysmic explosion triggered by the merger of two neutron stars.
Published 'Cosmic lighthouses' that cleared primordial fog identified with JWST



Scientists working with data from NASA's James Webb Space Telescope (JWST) have obtained the first full spectra of some of the earliest starlight in the universe. The images provide the clearest picture yet of very low-mass, newborn galaxies, created less than a billion years after the Big Bang, and suggest the tiny galaxies are central to the cosmic origin story.
Published Experiment captures why pottery forms are culturally distinct



Potters of different cultural backgrounds learn new types differently, producing cultural differences even in the absence of differential cultural evolution. The research has implications for how we evaluate the difference of archaeological artifacts across cultures.
Published Plant seed and fruit analysis from the biblical home of Goliath sheds unprecedented light on Philistine ritual practices



While many aspects of Philistine culture are well-documented, the specifics of Philistine religious practices and deities have long remained shrouded in mystery. A recent study contributes valuable new data to our understanding of the Philistine's ritual practices. The discovery of numerous plants in two temples unearthed at the site unraveled unprecedented insights into Philistine cultic rituals and beliefs -- their temple food ingredients, timing of ceremonies, and plants for temple decoration.
Published Webb finds evidence for neutron star at heart of young supernova remnant



NASA's James Webb Space Telescope has found the best evidence yet for emission from a neutron star at the site of a recently observed supernova. The supernova, known as SN 1987A, was a core-collapse supernova, meaning the compacted remains at its core formed either a neutron star or a black hole. Evidence for such a compact object has long been sought, and while indirect evidence for the presence of a neutron star has previously been found, this is the first time that the effects of high-energy emission from the probable young neutron star have been detected.
Published A new beginning: The search for more temperate Tatooines



Luke Skywalker's childhood might have been slightly less harsh if he'd grown up on a more temperate Tatooine -- like the ones identified in a new study. According to the study's authors, there are more climate-friendly planets in binary star systems -- in other words, those with two suns -- than previously known. And, they say, it may be a sign that, at least in some ways, the universe leans in the direction of orderly alignment rather than chaotic misalignment.
Published Brightest and fastest-growing: Astronomers identify record-breaking quasar



Astronomers have characterized a bright quasar, finding it to be not only the brightest of its kind, but also the most luminous object ever observed. Quasars are the bright cores of distant galaxies and they are powered by supermassive black holes. The black hole in this record-breaking quasar is growing in mass by the equivalent of one Sun per day, making it the fastest-growing black hole to date.
Published Black hole at center of the Milky Way resembles a football



The supermassive black hole in the center of the Milky Way is spinning so quickly it is warping the spacetime surrounding it into a shape that can look like a football, according to a new study. That football shape suggests the black hole is spinning at a substantial speed, which researchers estimated to be about 60% of its potential limit.
Published Did neanderthals use glue? Researchers find evidence that sticks



Neanderthals created stone tools held together by a multi-component adhesive, a team of scientists has discovered. Its findings, which are the earliest evidence of a complex adhesive in Europe, suggest these predecessors to modern humans had a higher level of cognition and cultural development than previously thought.