Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Plants and Animals, Space: Astrophysics
Published Rocky planets can form in extreme environments



Astronomers have provided the first observation of water and other molecules in the highly irradiated inner, rocky-planet-forming regions of a disk in one of the most extreme environments in our galaxy. These results suggest that the conditions for terrestrial planet formation can occur in a possible broader range of environments than previously thought.
Published Broadband buzz: Periodical cicadas' chorus measured with fiber optic cables



Through an emerging technology called distributed fiber optic sensing, cables bringing high-speed internet to American households can be used to detect temperature changes, vibrations, and even sound. And periodical cicadas -- the insects that emerge by the billions every 13 or 17 years and make a racket with their mating calls -- are loud enough to be detected. A new study shows how fiber optic sensing could open new pathways for charting populations of these famously ephemeral bugs.
Published The waxy surface protecting plants might hold the key to developing stronger crops



Researchers have discovered that the waxy protective barrier around plants might play a role in sending chemical signals to other plants and insects.
Published Unknown animals were leaving bird-like footprints in Late Triassic Southern Africa



Ancient animals were walking around on bird-like feet over 210 million years ago, according to a new study.
Published Building blocks for life could have formed near new stars and planets



While life on Earth is relatively new, geologically speaking, the ingredients that combined to form it might be much older than once thought. The simplest amino acid, carbamic acid, could have formed alongside stars or planets within interstellar ices. The findings could be used to train deep space instruments like the James Webb Space Telescope to search for prebiotic molecules in distant, star-forming regions of the universe.
Published New astrophysics model sheds light on additional source of long gamma-ray bursts



Cutting-edge computer simulations combined with theoretical calculations are helping astronomers better understand the origin of some of the universe's most energetic and mysterious light shows -- gamma-ray bursts, or GRBs. The new unified model confirms that some long-lasting GRBs are created in the aftermath of cosmic mergers that spawn an infant black hole surrounded by a giant disk of natal material.
Published Astronomers discover disc around star in another galaxy



In a remarkable discovery, astronomers have found a disc around a young star in the Large Magellanic Cloud, a galaxy neighboring ours. It's the first time such a disc, identical to those forming planets in our own Milky Way, has ever been found outside our galaxy. The new observations reveal a massive young star, growing and accreting matter from its surroundings and forming a rotating disc.
Published How shifting climates may have shaped early elephants' trunks



Researchers have provided new insights into how ancestral elephants developed their dextrous trunks. A study of the evolution of longirostrine gomphotheres, an ancestor of the modern day elephant, suggests moving into open-land grazing helped develop their coiling and grasping trunks.
Published Solar activity likely to peak next year



Researchers have discovered a new relationship between the Sun's magnetic field and its sunspot cycle, that can help predict when the peak in solar activity will occur. Their work indicates that the maximum intensity of solar cycle 25, the ongoing sunspot cycle, is imminent and likely to occur within a year.
Published New way of searching for dark matter



Wondering whether whether Dark Matter particles actually are produced inside a jet of standard model particles, led researchers to explore a new detector signature known as semi-visible jets, which scientists never looked at before.
Published Telescope Array detects second highest-energy cosmic ray ever



In 1991, an experiment detected the highest-energy cosmic ray ever observed. Later dubbed the Oh-My-God particle, the cosmic ray’s energy shocked astrophysicists. Nothing in our galaxy had the power to produce it, and the particle had more energy than was theoretically possible for cosmic rays traveling to Earth from other galaxies. Simply put, the particle should not exist. On May 27, 2021, the Telescope Array experiment detected the second-highest extreme-energy cosmic ray. The newly dubbed Amaterasu particle deepens the mystery of the origin, propagation and particle physics of rare, ultra-high-energy cosmic rays.
Published Hybrid transistors set stage for integration of biology and microelectronics



Researchers create transistors combining silicon with biological silk, using common microprocessor manufacturing methods. The silk protein can be easily modified with other chemical and biological molecules to change its properties, leading to circuits that respond to biology and the environment.
Published This sea worm's posterior body part swims away, and now scientists know how



A research team shows how the expression of developmental genes in the Japanese green syllid worms, Megasyllis nipponica, helps form their swimming reproductive unit called stolon.
Published NASA's Webb reveals new features in heart of Milky Way



The latest image from NASA's James Webb Space Telescope shows a portion of the dense center of our galaxy in unprecedented detail, including never-before-seen features astronomers have yet to explain. The star-forming region, named Sagittarius C (Sgr C), is about 300 light-years from the Milky Way's central supermassive black hole, Sagittarius A*.
Published 'Triple star' discovery could revolutionize understanding of stellar evolution



A ground-breaking new discovery could transform the way astronomers understand some of the biggest and most common stars in the Universe. Research by PhD student Jonathan Dodd and Professor René Oudmaijer, from the University's School of Physics and Astronomy, points to intriguing new evidence that massive Be stars -- until now mainly thought to exist in double stars -- could in fact be 'triples'. The remarkable discovery could revolutionise our understanding of the objects -- a subset of B stars -- which are considered an important 'test bed' for developing theories on how stars evolve more generally.
Published Sophisticated swarming: Bacteria support each other across generations



When bacteria build communities, they cooperate and share nutrients across generations. Researchers have been able to demonstrate this for the first time using a newly developed method. This innovative technique enables the tracking of gene expression during the development of bacterial communities over space and time.
Published Trilobites rise from the ashes to reveal ancient map



Ten newly discovered species of trilobites, hidden for 490 million years in a little-studied part of Thailand, could be the missing pieces in an intricate puzzle of ancient world geography.
Published Hydrogen detected in lunar samples, points to resource availability for space exploration



Researchers have discovered solar-wind hydrogen in lunar samples, which indicates that water on the surface of the Moon may provide a vital resource for future lunar bases and longer-range space exploration.
Published Unearthing how a carnivorous fungus traps and digests worms



A new analysis sheds light on the molecular processes involved when a carnivorous species of fungus known as Arthrobotrys oligospora senses, traps and consumes a worm.
Published Dwarf galaxies use 10-million-year quiet period to churn out stars



If you look at massive galaxies teeming with stars, you might be forgiven in thinking they are star factories, churning out brilliant balls of gas. But actually, less evolved dwarf galaxies have bigger regions of star factories, with higher rates of star formation. Now, University of Michigan researchers have discovered the reason underlying this: These galaxies enjoy a 10-million-year delay in blowing out the gas cluttering up their environments. Star-forming regions are able to hang on to their gas and dust, allowing more stars to coalesce and evolve. In these relatively pristine dwarf galaxies, massive stars--stars about 20 to 200 times the mass of our sun--collapse into black holes instead of exploding as supernovae. But in more evolved, polluted galaxies, like our Milky Way, they are more likely to explode, thereby generating a collective superwind. Gas and dust get blasted out of the galaxy, and star formation quickly stops.