Showing 20 articles starting at article 501
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Chemistry: Organic Chemistry
Published An epigenome editing toolkit to dissect the mechanisms of gene regulation



A recent study led to the development of a powerful epigenetic editing technology. The system unlocks the ability to precisely program chromatin modifications at any specific position in the genome, to understand their causal role in transcription regulation. This innovative approach will help to investigate the role of chromatin modifications in many biological processes, and to program desired gene activity responses, which may prove useful in disease settings.
Published Chemists produce new-to-nature enzyme containing boron



Chemists created an enzyme with boronic acid at its reactive center. This approach can produce more selective reactions with boron, and allows the use of directed evolution to improve its catalytic power.
Published An adjuvant made in yeast could lower vaccine cost and boost availability



Adjuvants make vaccines more effective, though one of the best is an expensive extract from the soap bark tree. To lower the cost and avoid the laborious extraction process from bark, synthetic biologists introduced 38 separate genes into yeast to recreate the synthesis of the active molecule, a complex chemical, QS-21, that has a terpene core and numerous sugars. This may be the longest biosynthetic pathway ever inserted into yeast.
Published Limited adaptability makes freshwater bacteria vulnerable to climate change



Freshwater bacteria with small genomes frequently undergo prolonged periods of adaptive stagnation. Based on genomic analyses of samples from European lakes, researchers uncovered specific evolutionary strategies that shape these bacteria's lifestyles. Understanding the evolutionary dynamics of aquatic microbial communities is key to safeguarding ecosystem services.
Published Why is breaking down plant material for biofuels so slow?



Tracking individual enzymes during the breakdown of cellulose for biofuel production has revealed how several roadblocks slow this process when using plant material that might otherwise go to waste. The research may lead to new ways to improve the breakdown process and make the non-edible parts of plants and other plant waste, such as forestry residue, a more competitive source of biofuels.
Published 'Better than graphene' material development may improve implantable technology



Move over, graphene. There's a new, improved two-dimensional material in the lab. Borophene, the atomically thin version of boron first synthesized in 2015, is more conductive, thinner, lighter, stronger and more flexible than graphene, the 2D version of carbon. Now, researchers have made the material potentially more useful by imparting chirality -- or handedness -- on it, which could make for advanced sensors and implantable medical devices.
Published Intermittent fasting protects against liver inflammation and liver cancer



Fatty liver disease often leads to chronic liver inflammation and can even result in liver cancer. Scientists have now shown in mice that intermittent fasting on a 5:2 schedule can halt this development. The fasting regime reduces the development of liver cancer in mice with pre-existing liver inflammation. The researchers identified two proteins in liver cells that are jointly responsible for the protective effect of fasting. An approved drug can partially mimic this effect.
Published Fruit fly model identifies key regulators behind organ development



A new computational model simulating fruit fly wing development has enabled researchers to identify previously hidden mechanisms behind organ generation. An research team developed a fruit fly model to reverse engineer the mechanisms that generate organ tissue.
Published Progression of herpesvirus infection remodels mitochondrial organization and metabolism



Researchers have found that herpesvirus infection modifies the structure and normal function of the mitochondria in the host cell. The new information will help to understand the interaction between herpesvirus and host cells. Knowledge can be utilized in the development of viral treatments.
Published How a 'conductor' makes sense of chaos in early mouse embryos



The earliest stages of mammalian embryo development are like an orchestra performance, where everyone must play at the exact right moment and in perfect harmony. New research identifies one of the conductors making sense of the chaos.
Published Free-forming organelles help plants adapt to climate change



Plants' ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their cells whose function was, until now, a mystery. Researchers have now determined how these structures work on a molecular level, as well as where and how they form.
Published Caterbot? Robatapillar? It crawls with ease through loops and bends



Engineers created a catapillar-shaped robot that splits into segments and reassembles, hauls cargo, and crawls through twisting courses.
Published Using advanced genetic techniques, scientists create mice with traits of Tourette disorder



In research that may be a step forward toward finding personalized treatments for Tourette disorder, scientists have bred mice that exhibit some of the same behaviors and brain abnormalities seen in humans with the disorder.
Published New vaccine effective against coronaviruses that haven't even emerged yet



Researchers have developed a new vaccine technology that has been shown in mice to provide protection against a broad range of coronaviruses with potential for future disease outbreaks -- including ones we don't even know about.
Published High-pressure spectroscopy: Why 3,000 bars are needed to take a comprehensive look at a protein



Why 3,000 bars are needed to take a comprehensive look at a protein: Researchers present a new high-pressure spectroscopy method to unravel the properties of proteins' native structures.
Published Improved nutrition, sanitation linked to beneficial changes in child stress and epigenetic programming



A new study provides some of the clearest and most comprehensive evidence to date on what is known about stress physiology and 'epigenetic programming.'
Published Aligned peptide 'noodles' could enable lab-grown biological tissues



Researchers have developed peptide-based hydrogels that mimic the aligned structure of muscle and nerve tissues, which could enable the development of functional lab-grown tissue.
Published Genomes of 'star algae' shed light on origin of plants



Land plants cover the surface of our planet and often tower over us. They form complex bodies with multiple organs that consist of a broad range of cell types. Developing this morphological complexity is underpinned by intricate networks of genes, whose coordinated action shapes plant bodies through various molecular mechanisms. All of these magnificent forms burst forth from a one-off evolutionary event: when plants conquered Earth's surface, known as plant terrestrialization.
Published How E. coli get the power to cause urinary tract infections



New research examines how the bacteria Escherichia coli, or E. coli -- responsible for most UTIs -- is able to use host nutrients to reproduce at an extraordinarily rapid pace during infection despite the near sterile environment of fresh urine.
Published Plants utilize drought stress hormone to block snacking spider mites



Recent findings that plants employ a drought-survival mechanism to also defend against nutrient-sucking pests could inform future crop breeding programs aimed at achieving better broadscale pest control.