Showing 20 articles starting at article 1101
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Energy: Batteries
Published Looking for 'LUCA' and the timing of cellular evolution



LUCA, the 'last universal common ancestor' of all living organisms, lived 4.32 to at most 4.52 billion years ago. What LUCA looked like is unknown, but it must have been a cell with among others ribosomal proteins and an ATP synthase.
Published Laser-powered 'tweezers' reveal universal mechanism viruses use to package up DNA



Researchers have used laser-powered ‘optical tweezers’ to reveal a universal motor mechanism used by viruses for packaging their DNA into infectious particles.
Published Researchers shed light on how one deadly pathogen makes its chemicals



Investigators have played a key role in deciphering a previously unidentified cluster of genes responsible for producing sartorypyrones, a chemical made by the fungal pathogen Aspergillus fumigatus, whose family causes Aspergillosis in humans.
Published How gut microbes help alleviate constipation



Scientists have identified the genes in the probiotic Bifidobacteria longum responsible for improving gut motility. A research team found that B. longum strains possessing the abfA cluster of genes can ameliorate constipation through enhanced utilization of an indigestible fiber called arabinan in the gut.
Published Long in the Bluetooth: Scientists develop a more efficient way to transmit data between our devices



Researchers have developed a more energy efficient way of connecting our personal devices. New technology consumes less power than Bluetooth and can improve battery life of tech accessories, including earbuds and fitness trackers. Future applications could see us unlocking a door by touching its handle or shaking hands to exchange phone numbers.
Published Unearthing how a carnivorous fungus traps and digests worms



A new analysis sheds light on the molecular processes involved when a carnivorous species of fungus known as Arthrobotrys oligospora senses, traps and consumes a worm.
Published Bacteria store memories and pass them on for generations



Scientists have discovered that bacteria can create something like memories about when to form strategies that can cause dangerous infections in people, such as resistance to antibiotics and bacterial swarms when millions of bacteria come together on a single surface. The discovery -- which has potential applications for preventing and combatting bacterial infections and addressing antibiotic-resistant bacteria -- relates to a common chemical element bacterial cells can use to form and pass along these memories to their progeny over later generations.
Published Coffee grounds may hold key to preventing neurodegenerative diseases



A team of researchers found that caffeic-acid based Carbon Quantum Dots (CACQDs), which can be derived from spent coffee grounds, have the potential to protect brain cells from the damage caused by several neurodegenerative diseases.
Published Innovative aquaculture system turns waste wood into nutritious seafood



Innovative aquaculture system turns waste wood into nutritious seafood. Researchers hoping to rebrand a marine pest as a nutritious food have developed the world's first system of farming shipworms, which they have renamed 'Naked Clams'.
Published New computer code for mechanics of tissues and cells in three dimensions



Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.
Published Researchers develop comprehensive genetic map for bison, discover gene responsible for albinism



Researchers have determined the gene mutation responsible for an observable trait in bison -- albinism.
Published A deep-sea fish inspired researchers to develop supramolecular light-driven machinery



Chemists have developed a bioinspired supramolecular approach to convert photo-switchable molecules from their stable state into metastable one with low-energy red light. Their work enables fast, highly selective, and efficient switching, providing new tools for energy storage, activation of drugs with light, and sensing applications.
Published Scientists have solved the damselfly color mystery



For over 20 years, a research team has studied the common bluetail damselfly. Females occur in three different color forms -- one with a male-like appearance, something that protects them from mating harassment. In a new study, an international research team found that this genetic color variation that is shared between several species arose through changes in a specific genomic region at least five million years ago.
Published Heart repair via neuroimmune crosstalk



Unlike humans, zebrafish can completely regenerate their hearts after injury. They owe this ability to the interaction between their nervous and immune systems, as researchers now report.
Published New method to help with analysis of single cell data



CITE-seq (cellular indexing of transcriptomes and epitopes) is an RNA sequencing-based method that simultaneously quantifies cell surface protein and transcriptomic data within a single cell readout. The ability to study cells concurrently offers unprecedented insights into new cell types, disease states or other conditions. While CITE-seq solves the problem of detecting a limited number of proteins while using single-cell sequencing in an unbiased way, one of its limitations is the high levels of background noise that can hinder analysis.
Published Rediscovery of rare marine amoeba Rhabdamoeba marina



Researchers have rediscovered and successfully cultivating Rhabdamoeba marina -- a rare marine amoeba that has only been reported in two cases in the past century. Using this culture strain, they performed a comprehensive analysis of its genetic sequence, revealing for the first time the phylogenetic position of this enigmatic amoeba, and proposed a novel taxonomic classification based on their research findings.
Published Genomic tug of war could boost cancer therapy



Researchers have discovered a 'genomic tug of war' in animal studies that could influence how well certain patients -- or certain cancers -- respond to decitabine, a drug used to treat myelodysplastic syndromes that is plagued by drug resistance issues. For the first time, researchers show that decitabine causes coding and non-coding regions of DNA to engage in a tug of war for a gene activator, called H2A.Z. Typically, deticabine draws this gene activator away from coding DNA, causing gene expression to grind to a halt and cells to die. However, many types of cancer have very high levels of H2A.Z, which may help them overcome this decitabine-induced tug of war, allowing the cancer to grow.
Published How cell identity is preserved when cells divide



A new theoretical model helps explain how epigenetic memories, encoded in chemical modifications of chromatin, are passed from generation to generation. Within each cell's nucleus, researchers suggest, the 3D folding patterns of its genome determines which parts of the genome will be marked by these chemical modifications.
Published Much more than waste: Tiny vesicles exchange genetic information between cells in the sea



Researchers take a look at data that has so far been mostly discarded as contamination, revealing the previously underestimated role of extracellular vesicles (EVs). These are important for the exchange of genetic information between cells and thus for the microbial community in the sea.
Published A healthy mouth helps to maintain balanced metabolic profiles



Common oral infections, periodontal diseases and caries, are associated with inflammatory metabolic profiles related to an increased risk of cardiometabolic diseases, a new study by an international team of researchers suggests. Oral infections also predicted future adverse changes in metabolic profiles.