Showing 20 articles starting at article 1141
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Engineering: Biometric
Published Red meat consumption associated with increased type 2 diabetes risk



People who eat just two servings of red meat per week may have an increased risk of developing type 2 diabetes compared to people who eat fewer servings, and the risk increases with greater consumption, according to a new study. Researchers also found that replacing red meat with healthy plant-based protein sources, such as nuts and legumes, or modest amounts of dairy foods, was associated with reduced risk of type 2 diabetes.
Published Physical theory improves protein folding prediction



Proteins are important molecules that perform a variety of functions essential to life. To function properly, many proteins must fold into specific structures. However, the way proteins fold into specific structures is still largely unknown. Researchers have developed a novel physical theory that can accurately predict how proteins fold. Their model can predict things previous models cannot. Improved knowledge of protein folding could offer huge benefits to medical research, as well as to various industrial processes.
Published Restoring the function of a human cell surface protein in yeast cells



Yeast cells are widely used to study G protein-coupled receptors (GPCRs), a large group of cell surface proteins in humans. However, several of these proteins lose their function when introduced into yeast cells. To tackle this issue, researchers developed an innovative strategy to restore GPCR function in yeast cells by inducing random mutations. Their findings can help understand GPCRs better and could pave the way to therapeutic breakthroughs for many diseases.
Published Stolen genes allow parasitic control of behavior



A research team has discovered that parasites manipulate their hosts using stolen genes that they likely acquired through a phenomenon called horizontal gene transfer.
Published Soft optical fibers block pain while moving and stretching with the body



New soft, implantable fibers can deliver light to major nerves through the body. They are an experimental tool for scientists to explore the causes and potential treatments for peripheral nerve disorders in animal models.
Published Yeast speeds discovery of medicinal compounds in plants



Researchers have harnessed the power of baker's yeast to create a cost-effective and highly efficient approach for unraveling how plants synthesize medicinal compounds, and used the new method to identify key enzymes in a kratom tree.
Published Study elucidates evolution of mosquitoes and their hosts



Study creates a mosquito family tree to better understand disease transmission and host choice.
Published Single vaccine protects against three deadly strains of coronavirus



A vaccine designed to protect against three different deadly coronaviruses shows success in mouse studies, demonstrating the viability of a pan-coronavirus vaccine developed by researchers at the Duke Human Vaccine Institute.
Published Scientists uncover new way viruses fight back against bacteria



A microscopic discovery will not only enable scientists to understand the microbial world around us but could also provide a new way to control CRISPR-Cas biotechnologies.
Published New insights into the genetics of the common octopus: Genome at the chromosome level decoded



Octopuses are fascinating animals -- and serve as important model organisms in neuroscience, cognition research and developmental biology. To gain a deeper understanding of their biology and evolutionary history, validated data on the composition of their genome is needed, which has been lacking until now. Scientists have now been able to close this gap and, in a new study, determined impressive figures: 2.8 billion base pairs -- organized in 30 chromosomes. What sounds so simple is the result of complex, computer-assisted genome analyses and comparisons with the genomes of other cephalopod species.
Published Greener neighborhoods can protect us -- at the cellular level



A new study finds that greenspace -- the vegetation in a neighborhood's yards, parks and public spaces -- has a positive impact on a key genetic marker associated with exposure to stress. However, the study also finds that the positive impact of greenspace isn't enough to compensate for other environmental challenges, such as air pollution.
Published Unlocking the secrets of cell behavior on soft substrates: A paradigm shift in mechanobiology



A research group has developed a new method for studying how cancer cells function in softer and stiffer tissue environments. This insight challenges the existing paradigm, opening up new possibilities for research in cancer biology and tissue engineering.
Published Mimicking a bird's sticky spit to create cellulose gels



Using a small bird's nest-making process as a model, researchers have developed a nontoxic process for making cellulose gels.
Published Whaling wiped out far more fin whales than previously thought



Whaling in the 20th century destroyed 99% of the Eastern North Pacific fin whale breeding population. Because there is enough genetic diversity, current conservation measures should help the population rebound without becoming inbred. The future of fin whales in the Gulf of California depends on the recovery of the Eastern North Pacific population.
Published Critical step made for managing brushtail possums



Researchers say mapping the genetic code of the brushtail possum will benefit those working to both conserve and control the animal.
Published Art with DNA -- Digitally creating 16 million colors by chemistry



The DNA double helix is composed of two DNA molecules whose sequences are complementary to each other. The stability of the duplex can be fine-tuned in the lab by controlling the amount and location of imperfect complementary sequences. Fluorescent markers bound to one of the matching DNA strands make the duplex visible, and fluorescence intensity increases with increasing duplex stability. Now, researchers have succeeded in creating fluorescent duplexes that can generate any of 16 million colors -- a work that surpasses the previous 256 colors limitation. This very large palette can be used to 'paint' with DNA and to accurately reproduce any digital image on a miniature 2D surface with 24-bit color depth.
Published Unlocking secrets of immune system proteins: A potential path to new treatments



Using cryo-electron microscopy (cryo-EM), researchers captured unprecedented images of key immune system receptors interacting with messenger proteins, elucidating how the receptors change shape upon activation and transmit signals within the cell. The findings suggest new pathways for developing therapeutic molecules for diseases such as COVID-19, rheumatoid arthritis, neurodegenerative diseases and cancer.
Published Cocoa pods -- a source of chocolate, and potentially, flame retardants



As Halloween approaches, so too does the anticipation of a trick-or-treating stash filled with fun-sized chocolate candy bars. But to satisfy our collective craving for this indulgence, millions of cocoa pods are harvested annually. While the beans and pulp go to make chocolate, their husks are thrown away. Now, researchers show that cocoa pod husks could be a useful starting material for flame retardants.
Published Scientists discover the possible triggers for bacterial pathogens, opening the door for new treatment strategies



The legendary Alexander Fleming, who famously discovered penicillin, once said 'never to neglect an extraordinary appearance or happening.' And the path of science often leads to just that. New research is turning the page in our understanding of harmful bacteria and how they turn on certain genes, causing disease in our bodies.
Published Genomic analysis in snakes shows link between neutral, functional genetic diversity



In the world of threatened and endangered species conservation, the genomic revolution has raised some complicated questions: How can scientists justify assessing species genetic diversity without consulting entire genomes now that they can be sequenced? But then again, how can scientists justify the time and expense of genome sequencing when age-old measures of neutral genetic diversity are much cheaper and easier to obtain? A new study suggests making a transition from 'old school' genetics to 'new school' genomics for species conservation purposes probably isn't necessary in all cases.