Showing 20 articles starting at article 1021
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Engineering: Graphene
Published How immune cells recognize their enemies



In order for immune cells to do their job, they need to know against whom they should direct their attack. Research teams a have identified new details in this process.
Published Breakthrough nanobody technology against liver inflammation



Researchers have developed a technique based on nanobody technology to prevent liver inflammation. Nanobodies, or single-domain antibodies, are fragments of antibodies that can selectively bind to a specific antigen. Because they are simple to produce and react in very specific ways, they are often used in various biotechnological, therapeutic and diagnostic applications.
Published New genes can arise from nothing



The complexity of living organisms is encoded within their genes, but where do these genes come from? Researchers resolved outstanding questions regarding the origin of small regulatory genes, and described a mechanism that creates their DNA palindromes. Under suitable circumstances, these palindromes evolve into microRNA genes.
Published New insights into Zebra mussel attachment fibers offer potential solutions to combat invasive species, develop sustainable materials



A recent study has revealed that an unlikely event, occurring over 12 million years ago played an important role in shaping one of Canada's most damaging invasive species. Zebra and quagga mussels, belonging to the Dreissenid family, are widespread freshwater invasive species throughout North America that present a significant danger to native ecosystems by competing for resources. Using a fibrous anchor called a byssus, Dreissenid mussels contribute to biofouling on surfaces and obstruct intake structures in power stations and water treatment plants.
Published Molecular fossils shed light on ancient life



Paleontologists are getting a glimpse at life over a billion years in the past based on chemical traces in ancient rocks and the genetics of living animals. New research combines geology and genetics, showing how changes in the early Earth prompted a shift in how animals eat.
Published Manipulation of gut microbiota with flaxseed could reduce breast cancer risk



A new study demonstrates that the human gut microbiome may be a factor in breast health.
Published Growing biofilms actively alter host environment



Dental plaque, gut bacteria and the slippery sheen on river rocks are all examples of biofilms, organized communities of microorganisms that colonize our bodies and the world around us. A new study reveals exactly how growing biofilms shape their environments and fine-tune their internal architecture to fit their surroundings. The findings may have implications for a wide variety of applications, from fighting disease to engineering new types of living active materials.
Published Tiny llama nanobodies neutralize different noroviruses: Can they improve human anti-viral therapies?



Researchers investigated a novel strategy to neutralize human noroviruses. They tested the ability of tiny antibodies produced by llamas, called nanobodies, to effectively neutralize human norovirus infection in the lab. The unexpected findings reveal that nanobodies could be developed as a therapeutic agent against human norovirus.
Published Fungus-fighting protein could help overcome severe autoimmune disease and cancer



A protein in the immune system programmed to protect the body from fungal infections is also responsible for exacerbating the severity of certain autoimmune diseases such as irritable bowel disease (IBS), type 1 diabetes, eczema and other chronic disorders, new research has found. The discovery could pave the way for new and more effective drugs, without the nasty side effects of existing treatments. In addition to helping to manage severe autoimmune conditions, the breakthrough could also help treat all types of cancer.
Published Influx of water and salts propel immune cells through the body



Researchers have shown that an influx of water and ions into immune cells allows them to migrate to where they're needed in the body.
Published Reverse metabolomics: New method finds biomarker for inflammatory bowel disease



Scientists' debut 'reverse metabolomics,' a groundbreaking approach to advancing microbiome research. They use the technique to discover hundreds of new human molecules, and a new biomarker and therapeutic target for inflammatory bowel disease.
Published Chemists create organic molecules in a rainbow of colors



Chemists have now come up with a way to make molecules known as acenes more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.
Published Pregnant women are missing vital nutrients needed for them and their babies



Pregnant women eating modern diets are missing key nutrients needed for them and their babies, and this could get worse with the move to plant-based foods. Scientists surveying more than 1,700 women found most were missing vitamins usually found in meat and dairy, including B12, B6 and D, folic acid and riboflavin which are essential for the development of fetuses in the womb.
Published From infamy to ingenuity: Bacterial hijack mechanisms as advanced genetic tools



Researchers have uncovered the intricate molecular mechanism used by parasitic phytoplasma bacteria, known for inducing 'zombie-like' effects in plants.
Published 'Shocking' discovery: Electricity from electric eels may transfer genetic material to nearby animals



Researchers have discovered that electric eels can alter the genes of tiny fish larvae with their electric shock. Their findings help to better understand electroporation, a method by which genes can be transported using electricity.
Published Sugar permeation discovered in plant aquaporins



Aquaporins, which move water through membranes of plant cells, were not thought to be able to permeate sugar molecules, but researchers have observed sucrose transport in plant aquaporins for the first time, challenging this theory.
Published Recycling concrete using carbon can reduce emissions and waste



Amid the rubble of large-sale earthquake, war or other disaster -- and as ageing buildings and infrastructure are replaced -- mountains of concrete are often taken to landfill or pounded into rubble for roads. For a more sustainable approach, experts are developing a 'value add' for old broken concrete to 'upcycling' coarse aggregate to produce a strong, durable and workable concrete using a small amount of a secret ingredient -- graphene.
Published Deep sea sensor reveals that corals produce reactive oxygen species



A new sensor on the submersible Alvin discovered reactive oxygen species for the first time in deep-sea corals, broadening our understanding of fundamental coral physiology.
Published Macrophages 'eat' insulin-producing cells to regulate insulin after mice have given birth



Pregnancy brings a rise in pancreatic beta cells -- the cells that produce insulin. Shortly after birth, these cells return to their normal levels. The mechanisms behind this process had remained a mystery. But now a research group has revealed that white blood cells called macrophages 'eat' these cells.
Published Tiny electromagnets made of ultra-thin carbon



Graphene, that is extremely thin carbon, is considered a true miracle material. An international research team has now added another facet to its diverse properties with new experiments: Experts fired short terahertz pulses at micrometer-sized discs of graphene, which briefly turned these minuscule objects into surprisingly strong magnets. This discovery may prove useful for developing future magnetic switches and storage devices.