Showing 20 articles starting at article 1021

< Previous 20 articles        Next 20 articles >

Categories: Biology: Cell Biology, Engineering: Nanotechnology

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Zoology Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Environmental: Water
Published

Sparrows uniquely adapted to Bay Area marshes are losing their uniqueness      (via sciencedaily.com)     Original source 

How does loss of habitat affect the animals still living there? A genetic study of saltwater-adapted Savannah sparrows around the San Francisco Bay Area shows that the 90% loss of tidal marsh habitat has led to more interbreeding with freshwater-adapted Savannah sparrows, diminishing their genetic adaptation to saltwater, such as enlarged kidneys and larger beak. This could lessen their ability to live in a saltwater habitat.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry
Published

Innovative microscopy technique reveals secrets of lipid synthesis inside cells      (via sciencedaily.com)     Original source 

Researchers have made a pivotal discovery in the field of cellular microscopy. The team has successfully developed Two-Color Infrared Photothermal Microscopy (2C-IPM), a novel technology designed to investigate neutral lipids within lipid droplets of living cells. This new microscopy can be used with isotope labeling, which allows for the detailed monitoring of neutral lipid synthesis within individual lipid droplets.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Breakthrough in muscle regeneration: Nanotech scaffolding supports tissue growth      (via sciencedaily.com)     Original source 

MXene nanoparticle scaffolds have been shown to stimulate muscle growth, making them a promising option to treat muscle loss and damage. Now, researchers explain the molecular mechanisms behind their positive influence on muscle regeneration. This discovery can advance MXene scaffolds, potentially improving muscle reconstruction surgeries and establishing them as a standard medical practice for muscle recovery.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Hacking DNA to make next-gen materials      (via sciencedaily.com)     Original source 

Scientists have developed a universal method for producing a wide variety of designed metallic and semiconductor 3D nanostructures -- the potential base materials for next-generation semiconductor devices, neuromorphic computing, and advanced energy applications. The new method, which uses a 'hacked' form of DNA that instructs molecules to organize themselves into targeted 3D patterns, is the first of its kind to produce robust nanostructures from multiple material classes.

Biology: Biochemistry Biology: Cell Biology Biology: General Geoscience: Earth Science Geoscience: Geochemistry
Published

Chemists use the blockchain to simulate over 4 billion chemical reactions essential to the origins of life      (via sciencedaily.com)     Original source 

Cryptocurrency is usually 'mined' through the blockchain by asking a computer to perform a complicated mathematical problem in exchange for tokens of cryptocurrency. But now a team of chemists have repurposed this process, asking computers to instead generate the largest network ever created of chemical reactions which may have given rise to prebiotic molecules on early Earth.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Ecology: Endangered Species Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New study unveils how plants control the production of reactive oxygen species      (via sciencedaily.com)     Original source 

Reactive oxygen species (ROS), though generally regarded as toxic byproducts of biological processes, serve many important functions in plants. However, the precise mechanism that plants use to regulate the production of ROS remains elusive. In a recent study, researchers clarified how an important ROS-generating enzyme is activated, revealing mechanisms likely conserved across all land plants. Their findings could pave the way for breakthroughs in agricultural and environmental remediation tools.

Biology: Cell Biology Biology: Zoology
Published

Live animal transport regulations not 'fit for purpose', major international study finds      (via sciencedaily.com)     Original source 

A 'fitness check' of regulations in five countries meant to protect animals during transportation, has deemed that they all fall short of fully protecting animals during transport. Findings from this interdisciplinary work involving animal welfare scientists and a law lecturer which compared animal transport rules designed to protect the billions of livestock that are transported on lengthy journeys in Australia, Canada, New Zealand, EU (including UK) and US, highlights serious failures.

Biology: Biochemistry Biology: Cell Biology Chemistry: Biochemistry Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Physics: Acoustics and Ultrasound
Published

Uncovering the secrets behind the silent flight of owls      (via sciencedaily.com)     Original source 

Owls produce negligible noise while flying. While many studies have linked the micro-fringes in owl wings to their silent flight, the exact mechanisms have been unclear. Now, a team of researchers has uncovered the effects of these micro-fringes on the sound and aerodynamic performance of owl wings through computational fluid dynamic simulations. Their findings can inspire biomimetic designs for the development of low-noise fluid machinery.

Biology: Biochemistry Biology: Cell Biology Biology: General
Published

Shallow soda lakes show promise as cradles of life on Earth      (via sciencedaily.com)     Original source 

A field study shows how phosphate can concentrate in environments known as 'soda lakes' at the very high levels needed for the basic molecules of life to emerge. A shallow, salty lake in western Canada gives new support to Charles Darwin's idea that life could have emerged in a 'warm little pond.'

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Tiny worm, giant leap: Discovery of highly specific fatty acid attachment to proteins      (via sciencedaily.com)     Original source 

In a world where the intricacies of molecular biology often seem as vast and mysterious as the cosmos, a new groundbreaking study delves into the microscopic universe of proteins, unveiling a fascinating aspect of their existence. This revelation could hold profound implications for the understanding and treatment of a myriad of human diseases.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Plumber's nightmare structure in block polymers      (via sciencedaily.com)     Original source 

Scientists solve a long-standing block copolymer research conundrum through polymer chain end modifications. The study garners substantial academic attention by achieving tangible manifestations of intricate polymer structures that were previously solely theoretical.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Environmental: General Geoscience: Geochemistry
Published

Don't overeat: How archaea toggle the nitrogen-uptake switch      (via sciencedaily.com)     Original source 

By tightly regulating nitrogen uptake, microorganisms avoid overeating nitrogen and thus wasting energy. Scientists now reveal how some methanogenic archaea manage to do so.

Chemistry: Biochemistry Computer Science: General Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General
Published

DNA origami folded into tiny motor      (via sciencedaily.com)     Original source 

Scientists have created a working nanoscale electomotor. The science team designed a turbine engineered from DNA that is powered by hydrodynamic flow inside a nanopore, a nanometer-sized hole in a membrane of solid-state silicon nitride. The tiny motor could help spark research into future applications such as building molecular factories or even medical probes of molecules inside the bloodstream.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Single-celled kamikazes spearhead bacterial infection      (via sciencedaily.com)     Original source 

You suddenly feel sick -- pathogenic bacteria have managed to colonize and spread in your body! The weapons they use for their invasion are harmful toxins that target the host's defense mechanisms and vital cell functions. Before these deadly toxins can attack host cells, bacteria must first export them from their production site -- the cytoplasm -- using dedicated secretion systems.

Biology: Cell Biology Biology: Microbiology
Published

Semen microbiome health may impact male fertility      (via sciencedaily.com)     Original source 

A new study finds that a small group of microorganisms may be influencing sperm motility.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Using magnetized neurons to treat Parkinson's disease symptoms      (via sciencedaily.com)     Original source 

Electrical deep brain stimulation (DBS) is a well-established method for treating disordered movement in Parkinson's disease. However, implanting electrodes in a person's brain is an invasive and imprecise way to stimulate nerve cells. Researchers report a new application for the technique, called magnetogenetics, that uses very small magnets to wirelessly trigger specific, gene-edited nerve cells in the brain. The treatment effectively relieved motor symptoms in mice without damaging surrounding brain tissue.