Showing 20 articles starting at article 881
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Engineering: Nanotechnology
Published An environmentally friendly way to turn seafood waste into value-added products



Reduce, reuse, recycle, and repurpose: These are all ways we can live more sustainably. One tricky aspect of recycling, though, is that sometimes the recycling process is chemically intensive, and this is the case for recycling one of the world's most abundant materials -- chitin. Researchers have tackled this problem and found a way to sustainably recover chitin from seafood waste.
Published Toxic elements found in stranded whales, dolphins over 15 years



Researchers evaluated the prevalence, concentration and tissue distribution of essential and non-essential trace elements, including heavy metal toxicants in tissue (blubber, kidney, liver, skeletal muscle, skin) and fecal samples collected from 90 whales and dolphins stranded in Georgia and Florida from 2007 to 2021.
Published Links between human, canine brain tumors



Researchers have discovered that meningiomas -- the most common type of brain tumor in humans and dogs -- are extremely similar genetically.
Published Revolutionary breakthrough in solar energy: Most efficient QD solar cells



A research team has unveiled a novel ligand exchange technique that enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.
Published New system triggers cellular waste disposal



Established treatments for cancer and other diseases often focus on inhibiting harmful enzymes to mitigate their effects. However, a more innovative approach has emerged: harnessing the cell's natural waste disposal system not just to deactivate but to entirely eradicate these proteins. Researchers have previously demonstrated the efficacy of this approach through two distinct methods. Now they unveil a third system capable of targeting and disposing of previously inaccessible proteins.
Published Detecting pathogens faster and more accurately by melting DNA



A new analysis method can detect pathogens in blood samples faster and more accurately than blood cultures, which are the current state of the art for infection diagnosis. The new method, called digital DNA melting analysis, can produce results in under six hours, whereas culture typically requires 15 hours to several days, depending on the pathogen.
Published Angle-dependent holograms made possible by metasurfaces



Scientists unveil metasurface technology, allowing for angle-dependent holograms.
Published Engineering a coating for disease-free produce



Texas A&M researchers combine food-grade wax with essential oils to defend produce from bacteria.
Published Bridging diet, microbes, and metabolism: Implications for metabolic disorders



Mounting evidence suggests that the secret to understanding human health and combating metabolic diseases lies hidden within the microscopic world of our gut bacteria. Recent research reveals that a specific fatty acid produced by gut bacteria directly influences fat metabolism in animals. This research is pivotal as it sheds light on the complex interplay between the diet, gut microbiota, and host metabolic health, offering insights that could open new avenues in our approach to managing metabolic disorders.
Published Photosynthetic mechanism of purple sulfur bacterium adapted to low-calcium environments



Purple sulfur bacteria (PSB) convert light energy into chemical energy through photosynthesis. Interestingly, certain species can photosynthesize even in environments with low-calcium levels. Using cryo-electron microscopy, researchers unveiled the structure of light-harvesting complexes and elucidated the mechanism that facilitates photosynthesis under low-calcium conditions.
Published Breakthrough in developing the PD-1-enhanced DNA vaccine for over 6-year cART-free AIDS prevention and virologic control



Researchers found that PD-1-enhanced DNA vaccination can induce sustained virus-specific CD8+ T cell immunity in an AIDS monkey model. The vaccinated monkeys remained free of AIDS for six years and achieved virologic control without the need for combination antiretroviral therapy (cART), a treatment used to suppress viral replication in individuals living with human immunodeficiency virus (HIV). The study also found that polyfunctional and broadly reactive effector-memory virus-specific T cells were maintained in the protected experimental macaques for over six years. The findings provide supporting evidence that the PD-1-enhanced DNA vaccine strategy holds promise as a third-generation DNA vaccine for AIDS prevention and immunotherapy.
Published Researchers are using RNA in a new approach to fight HIV



A pharmacy associate professor has developed a novel nanomedicine loaded with genetic material called small interfering RNAs (siRNA) to fight human immunodeficiency virus (HIV) using gene therapy.
Published Using metabolomics for assessing safety of chemicals may reduce the use of lab rats



Scientists have discovered a more robust way of grouping chemicals and using read-across for toxicological data to meet regulatory requirements, which could greatly reduce animal testing.
Published It's the spin that makes the difference



Biomolecules such as amino acids and sugars occur in two mirror-image forms -- in all living organisms, however, only one is ever found. Why this is the case is still unclear. Researchers have now found evidence that the interplay between electric and magnetic fields could be at the origin of this phenomenon.
Published New model identifies drugs that shouldn't be taken together



Researchers have developed a multipronged strategy to identify the transporters used by different drugs. Their approach, which makes use of both tissue models and machine-learning algorithms, has already revealed that a commonly prescribed antibiotic and a blood-thinner can interfere with each other.
Published Plastic recycling with a protein anchor



Polystyrene is a widespread plastic that is essentially not recyclable when mixed with other materials and is not biodegradable. A research team has now introduced a biohybrid catalyst that oxidizes polystyrene microparticles to facilitate their subsequent degradation. The catalyst consists of a specially constructed 'anchor peptide' that adheres to polystyrene surfaces and a cobalt complex that oxidizes polystyrene.
Published Study reveals molecular mechanisms behind hibernation in mammals



Researchers have characterized changes in the structure of motor proteins, called myosins, and energy consumption that occur during hibernation, highlighting key differences in large and small hibernators.
Published Scientists develop novel radiotracer for earlier detection of disease



Scientists have developed a new radiotracer (called [18F]4-FDF) that can map how cells use fructose for energy.
Published Fresh meat: New biosensor accurately and efficiently determines meat freshness



Despite the technological advances keeping meat fresh for as long as possible, certain aging processes are unavoidable. Adenosine triphosphate is a molecule produced by breathing and responsible for providing energy to cells. When an animal stops breathing, ATP synthesis also stops, and the existing molecules decompose into acid, diminishing first flavor and then safety. Hypoxanthine and xanthine are intermediate steps in this transition. Assessing their prevalence in meat indicates its freshness.
Published Bat 'nightclubs' may be the key to solving the next pandemic



Researchers are studying how bats can carry deadly viruses, but not develop symptoms. They found that what happens during swarming behavior -- like social gatherings for bats -- may hold the key to understanding their viral tolerance and translate to human health in fighting off diseases like Ebola and COVID-19.