Showing 20 articles starting at article 521
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Physics: Quantum Computing
Published The end of the quantum tunnel



Quantum mechanical effects such as radioactive decay, or more generally: 'tunneling', display intriguing mathematical patterns. Researchers now show that a 40-year-old mathematical discovery can be used to fully encode and understand this structure.
Published Study details a common bacterial defense against viral infection



Researchers report on the molecular assembly of one of the most common anti-phage systems -- from the family of proteins called Gabija -- that is estimated to be used by at least 8.5%, and up to 18%, of all bacteria species on Earth.
Published Mobile device location data is already used by private companies, so why not for studying human-wildlife interactions



When did you last go anywhere without your cell phone? From maps and weather apps to social media platforms, we give consent for our phones to trace our footsteps and behavior. These curated mobility data are often used for personalized advertisements. Scientists now argue mobility data can offer so much more -- it is key to understanding human-wildlife interactions for guiding policy decisions on sustainability-related issues and should be free and accessible for research.
Published From disorder to order: Flocking birds and 'spinning' particles



Researchers have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing.
Published Surprising evolutionary pattern in yeast study



Research study reports intriguing findings made through innovative artificial intelligence analysis about yeasts -- small fungi that are key contributors to biotechnology, food production, and human health. These findings on simple yeast organisms not only challenge widely accepted ideas about yeast evolution, but also provides access to an incredibly rich yeast analysis dataset that could have major implications for future evolutionary biology and bioinformatics research for years to come.
Published Genetic hope in fight against devastating wheat disease



Fungal disease Fusarium head blight (FHB) is on the rise due to increasingly humid conditions induced by climate change during the wheat growing season, but a fundamental discovery could help reduce its economic harm.
Published Barley plants fine-tune their root microbial communities through sugary secretions



Different types of barley recruit distinct communities of soil microbes to grow around their roots by releasing a custom mix of sugars and other compounds, according to a new study.
Published Food in sight? The liver is ready!



What happens in the body when we are hungry and see and smell food? A team of researchers has now been able to show in mice that adaptations in the liver mitochondria take place after only a few minutes. Stimulated by the activation of a group of nerve cells in the brain, the mitochondria of the liver cells change and prepare the liver for the adaptation of the sugar metabolism. The findings could open up new avenues for the treatment of type 2 diabetes.
Published Curiosity promotes biodiversity



Cichlid fishes exhibit differing degrees of curiosity. The cause for this lies in their genes, as reported by researchers. This trait influences the cichlids' ability to adapt to new habitats.
Published With hybrid brains, these mice smell like a rat



Mice lacking an olfactory system have had their sense of smell restored with neurons from rats, the first time scientists have successfully integrated the sensory apparatus of one species into another.
Published Synthetic droplets cause a stir in the primordial soup



Our bodies are made up of trillions of different cells, each fulfilling their own unique function to keep us alive. How do cells move around inside these extremely complicated systems? How do they know where to go? And how did they get so complicated to begin with? Simple yet profound questions like these are at the heart of curiosity-driven basic research, which focuses on the fundamental principles of natural phenomena.
Published Scientists replace fishmeal in aquaculture with microbial protein derived from soybean processing wastewater



Scientists have successfully replaced half of the fishmeal protein in the diets of farmed Asian seabass with a 'single cell protein' cultivated from microbes in soybean processing wastewater, paving the way for more sustainable fish farming practices.
Published Advanced cell atlas opens new doors in biomedical research



Researchers have developed a web-based platform that offers an unprecedented view of the human body at the cellular level. The aim is to create an invaluable resource for researchers worldwide to increase knowledge about human health and disease.
Published How immune cells communicate to fight viruses



Chemokines are signalling proteins that orchestrate the interaction of immune cells against pathogens and tumors. To understand this complex network, various techniques have been developed to identify chemokine-producing cells. However, it has not yet been possible to determine which cells react to these chemokines. Researchers have now developed a new class of genetically modified mice that enables the simultaneous identification of chemokine producers and sensors.
Published Scientists tune the entanglement structure in an array of qubits



A new technique can generate batches of certain entangled states in a quantum processor. This advance could help scientists study the fundamental quantum property of entanglement and enable them to build larger and more complex quantum processors.
Published After spinal cord injury, neurons wreak havoc on metabolism



Conditions such as diabetes, heart attack and vascular diseases commonly diagnosed in people with spinal cord injuries can be traced to abnormal post-injury neuronal activity that causes abdominal fat tissue compounds to leak and pool in the liver and other organs, a new animal study has found.
Published Cells may possess hidden communication system



Cells constantly navigate a dynamic environment, facing ever-changing conditions and challenges. But how do cells swiftly adapt to these environmental fluctuations? A new study is answering that question by challenging our understanding of how cells function. A team of researchers suggests that cells possess a previously unknown information processing system that allows them to make rapid decisions independent of their genes.
Published Researchers uncover 'parallel universe' in tomato genetics



Researchers have made a breakthrough for evolutionary biology of the Solanaceae family, which includes peppers, potatoes and petunias.
Published Color variants in cuckoos: The advantages of rareness



Every cuckoo is an adopted child -- raised by foster parents, into whose nest the cuckoo mother smuggled her egg. The cuckoo mother is aided in this subterfuge by her resemblance to a bird of prey. There are two variants of female cuckoos: a gray morph that looks like a sparrowhawk, and a rufous morph. Male cuckoos are always gray.
Published Unveiling the mysteries of cell division in embryos with timelapse photography



The beginning of life is shrouded in mystery. While the intricate dynamics of mitosis is well-studied in the so-called somatic cells -- the cells that have a specialized function, like skin and muscle cells -- they remain elusive in the first cells of our bodies, the embryonic cells. Embryonic mitosis is notoriously difficult to study in vertebrates, as live functional analyses and -imaging of experimental embryos are technically limited, which makes it hard to track cells during embryogenesis.