Showing 20 articles starting at article 261
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Physics: General
Published Not so selfish after all: Viruses use freeloading genes as weapons



Certain pieces of DNA have been labeled as 'selfish genetic elements' due to notions that they don't contribute to a host organism's survival. Instead, researchers have now discovered that these elements have been weaponized and play a crucial role by cutting off a competitor's ability to reproduce.
Published Scientists map how deadly bacteria evolved to become epidemic



Pseudomonas aeruginosa -- an environmental bacteria that can cause devastating multidrug-resistant infections, particularly in people with underlying lung conditions -- evolved rapidly and then spread globally over the last 200 years, probably driven by changes in human behavior, a new study has found.
Published Single atoms show their true color



A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.
Published Never-before-seen view of gene transcription captured



New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.
Published Do genes-in-pieces code for proteins that fold in pieces?



A new study offers new insights into the evolution of foldable proteins.
Published Researchers uncover key mechanisms in chromosome structure development



Researchers are making strides in understanding how chromosome structures change throughout the cell's life cycle.
Published Retreating glaciers: Fungi enhance carbon storage in young Arctic soils



Melting Arctic glaciers are in rapid recession, and microscopic pioneers colonize the new exposed landscapes. Researchers revealed that yeasts play an important role in soil formation in the Arctic.
Published Scientists discover way to 'grow' sub-nanometer sized transistors



A research team has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.
Published A genetic algorithm for phononic crystals



Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.
Published Machine learning could aid efforts to answer long-standing astrophysical questions



Physicists have developed a computer program incorporating machine learning that could help identify blobs of plasma in outer space known as plasmoids. In a novel twist, the program has been trained using simulated data.
Published Mechanism of bio-inspired control of liquid flow



The more we discover about the natural world, the more we find that nature is the greatest engineer. Past research implied that liquids can only be transported in fixed direction on species with specific liquid communication properties and cannot switch the transport direction. Recently, researchers have shown that an African plant controls water movement in a previously unknown way -- and this could inspire breakthroughs in a range of technologies in fluid dynamics and nature-inspired materials, including applications that require multistep and repeated reactions, such as microassays, medical diagnosis and solar desalination etc.
Published Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials



In the decade since their discovery, the family of two-dimensional materials called MXenes has shown a great deal of promise for applications ranging from water desalination and energy storage to electromagnetic shielding and telecommunications, among others. While researchers have long speculated about the genesis of their versatility, a recent study has provided the first clear look at the surface chemical structure foundational to MXenes' capabilities.
Published Giant clams may hold the answers to making solar energy more efficient



Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.
Published Advancing toward a preventative HIV vaccine



A major challenge in developing a vaccine for HIV is that the virus mutates fast -- very fast. Although a person initially becomes infected with one or a few HIV strains, the virus replicates and mutates quickly, resulting in a 'swarm' of viral strains existing in a single body.
Published Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature



Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.
Published A new breakthrough in understanding regeneration in a marine worm



The sea worm Platynereis dumerilii is only a few centimeters long but has a remarkable ability: in just a few days, it can regenerate entire parts of its body after an injury or amputation. By focusing more specifically on the mechanisms at play in the regeneration of this worm's tail, a research team has observed that gut cells play a role in the regeneration of the intestine as well as other tissues such as muscle and epidermis.
Published Neutrons on classically inexplicable paths



Is nature really as strange as quantum theory says -- or are there simpler explanations? New neutron measurements prove: It doesn't work without the strange properties of quantum theory.
Published Near chromosome-level genome of the Mojave poppy bee



Scientists have developed a near chromosome-level genome for the Mojave poppy bee, a specialist pollinator of conservation concern.
Published Research shows how RNA 'junk' controls our genes



Researchers have made a significant advance in understanding how genes are controlled in living organisms. The new study focuses on critical snippets of RNA in the tiny, transparent roundworm Caenorhabditis elegans (C. elegans). The study provides a detailed map of the 3'UTR regions of RNA in C. elegans. 3'UTRs (untranslated regions) are segments of RNA involved in gene regulation.
Published Proteins and fats can drive insulin production for some, paving way for tailored nutrition



When it comes to managing blood sugar levels, most people think about counting carbs. But new research shows that, for some, it may be just as important to consider the proteins and fats in their diet. The study is the first large-scale comparison of how different people produce insulin in response to each of the three macronutrients: carbohydrates (glucose), proteins (amino acids) and fats (fatty acids). The findings reveal that production of the blood sugar-regulating hormone is much more dynamic and individualized than previously thought, while showing for the first time a subset of the population who are hyper-responsive to fatty foods.