Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Discovery of a new defense mechanism in bacteria      (via sciencedaily.com)     Original source 

When confronted with an antibiotic, toxic substance, or other source of considerable stress, bacteria are able to activate a defense mechanism using cell-to-cell communication to 'warn' unaffected bacteria, which can then anticipate, shield themselves and spread the warning signal.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A breakthrough on the edge: One step closer to topological quantum computing      (via sciencedaily.com)     Original source 

Researchers have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Ecology: Nature
Published

Not so simple: Mosses and ferns offer new hope for crop protection      (via sciencedaily.com)     Original source 

Mosses, liverworts, ferns and algae may offer an exciting new research frontier in the global challenge of protecting crops from the threat of disease.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Marine Ecology: Sea Life
Published

The detection of a massive harmful algal bloom in the Arctic prompts real-time advisories to western Alaskan communities      (via sciencedaily.com)     Original source 

A summer 2022 research cruise that detected a massive and highly toxic harmful algal bloom (HAB) in the Bering Strait has provided a dramatic example of science that utilized new technology to track a neurotoxic HAB and effectively communicate that information in real-time to protect remote communities in coastal Alaska.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology
Published

Phage-derived enzyme targets E. faecalis biofilms to mitigate acute graft-versus-host disease      (via sciencedaily.com)     Original source 

Acute graft-versus-host disease occurs when donor immune cells attack the recipient's tissues after an allogeneic hematopoietic stem cell transplantation (allo-HCT). Researchers recently identified a bacteriophage-derived enzyme called endolysin capable of targeting biofilms formed by Enterococcus faecalis. Their findings offer hope for tailored interventions in allo-HCT.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology
Published

Discovery could help reduce adverse side effects of popular next-generation obesity medications      (via sciencedaily.com)     Original source 

By teasing apart the therapeutic benefits from the adverse effects of new generation obesity medications, researchers found a population of neurons in the brain that controls food intake without causing nausea in an animal model.

Anthropology: Cultures Anthropology: General Archaeology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Microbiology Paleontology: Fossils
Published

The plague may have caused the downfall of the Stone Age farmers      (via sciencedaily.com)     Original source 

Ancient DNA from bones and teeth hints at a role of the plague in Stone Age population collapse. Contrary to previous beliefs, the plague may have diminished Europe's populations long before the major plague outbreaks of the Middle Ages, new research shows.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New one-step method to make multiple edits to a cell's genome      (via sciencedaily.com)     Original source 

A team of scientists have developed a new method that enables them to make precise edits in multiple locations within a cell -- all at once. Using molecules called retrons, they created a tool that can efficiently modify DNA in bacteria, yeast, and human cells.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Moving from the visible to the infrared: Developing high quality nanocrystals      (via sciencedaily.com)     Original source 

Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology
Published

A gut microbe could hold a key to help people benefit from healthy foods      (via sciencedaily.com)     Original source 

In a study involving 50,000+ individuals from around the world, higher gut levels of Blastocystis, a single-celled organism commonly found in the digestive system, were linked to more favorable indicators of health.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General Archaeology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Ecology: Research Paleontology: Fossils
Published

Ancient dingo DNA shows modern dingoes share little ancestry with modern dog breeds      (via sciencedaily.com)     Original source 

A study of ancient dingo DNA revealed that the distribution of modern dingoes across Australia, including those on K'gari (formerly Fraser Island), pre-dates European colonization and interventions like the dingo-proof fence.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry
Published

New bio-based tool quickly detects concerning coronavirus variants      (via sciencedaily.com)     Original source 

Researchers have developed a bioelectric device that can detect and classify new variants of coronavirus to identify those that are most harmful. It has the potential to do the same with other viruses, as well.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Ecology: Trees
Published

Genomic data integration improves prediction accuracy of apple fruit traits      (via sciencedaily.com)     Original source 

Genotyping techniques can be used to select fruit trees with desired traits at the seedling stage, increasing the efficiency of fruit tree breeding. However, so far, there are multiple different genotyping systems, each generating distinct datasets. In a recent study, Japanese scientists revealed that integrating genomic data obtained with different genotyping systems can effectively combine with historical data, leveraging the accuracy of genomic predictions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Visualizing short-lived intermediate compounds produced during chemical reactions      (via sciencedaily.com)     Original source 

Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

GeneMAP discovery platform will help define functions for 'orphan' metabolic proteins      (via sciencedaily.com)     Original source 

Researchers have developed a discovery platform to probe the function of genes involved in metabolism -- the sum of all life-sustaining chemical reactions. The investigators used the new platform, called GeneMAP (Gene-Metabolite Association Prediction), to identify a gene necessary for mitochondrial choline transport.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A 2D device for quantum cooling      (via sciencedaily.com)     Original source 

Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

Not so selfish after all: Viruses use freeloading genes as weapons      (via sciencedaily.com)     Original source 

Certain pieces of DNA have been labeled as 'selfish genetic elements' due to notions that they don't contribute to a host organism's survival. Instead, researchers have now discovered that these elements have been weaponized and play a crucial role by cutting off a competitor's ability to reproduce.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Scientists map how deadly bacteria evolved to become epidemic      (via sciencedaily.com)     Original source 

Pseudomonas aeruginosa -- an environmental bacteria that can cause devastating multidrug-resistant infections, particularly in people with underlying lung conditions -- evolved rapidly and then spread globally over the last 200 years, probably driven by changes in human behavior, a new study has found.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Never-before-seen view of gene transcription captured      (via sciencedaily.com)     Original source 

New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.