Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Environmental: Water
Published New study unveils 16,000 years of climate history in the tropical Andes



Researchers highlight the roles of carbon dioxide and ocean currents as key drivers of temperature fluctuations in the tropical Andes over a 16,000 year period.
Published Study reveals oleoyl-ACP-hydrolase underpins lethal respiratory viral disease



Respiratory infections can be severe, even deadly, in some individuals, but not in others. Scientists have gained new understanding of why this is the case by uncovering an early molecular driver that underpins fatal disease. Oleoyl-ACP-hydrolase (OLAH) is an enzyme involved in fatty acid metabolism. A study shows that OLAH drives severe disease outcomes.
Published Researchers ID body's 'quality control' regulator for protein folding



Anyone who's tried to neatly gather a fitted sheet can tell you: folding is hard. Get it wrong with your laundry and the result can be a crumpled, wrinkled mess of fabric, but when folding fails among the approximately 7,000 proteins with an origami-like complexity that regulate essential cellular functions, the result can lead to one of a multitude of serious diseases ranging from emphysema and cystic fibrosis to Alzheimer's disease. Fortunately, our bodies have a quality-control system that identifies misfolded proteins and marks them either for additional folding work or destruction, but how, exactly, this quality-control process functions is not entirely known. Researchers have now made a major leap forward in our understanding of how this quality-control system works by discovering the 'hot spot' where all the action takes place.
Published Pre-surgical antibody treatment might prevent heart transplant rejection



Anti-rejection regimens currently in use are broad immunosuppressive agents that make patients susceptible to infections. By using specific antibodies, it may be possible to just block the inflammation that leads to rejection but leave anti-microbial immunity intact.
Published Bacteria in lakes fight climate change



Methane-oxidizing bacteria could play a greater role than previously thought in preventing the release of climate-damaging methane from lakes, researchers from Bremen report. They also show who is behind the process and how it works.
Published Low magnesium levels increase disease risk



A new study has identified why a diet rich in magnesium is so important for our health, reducing the risk of DNA damage and chronic degenerative disorders.
Published How mortal filaments' self-assemble and maintain order: Align or die



A previously unknown mechanism of active matter self-organization essential for bacterial cell division follows the motto 'dying to align': Misaligned filaments 'die' spontaneously to form a ring structure at the center of the dividing cell. The work could find applications in developing synthetic self-healing materials.
Published Taking a 'one in a million' shot to tackle dopamine-linked brain disorders



With the help of a tiny, transparent worm called Caenorhabditis elegans, researchers have identified novel players in dopamine signaling by taking advantage of a powerful platform generated via the Million Mutation Project (MMP) for the rapid identification of mutant genes based on their functional impact. They can seek insights from simpler organisms whose genes bear striking similarity to those found in humans and where opportunities for genetic insights to disease can be pursued more efficiently and inexpensively.
Published An appetizer can stimulate immune cells' appetite, a boon for cancer treatments



The body has a veritable army constantly on guard to keep us safe from microscopic threats from infections to cancer. Chief among this force is the macrophage, a white blood cell that surveils tissues and consumes pathogens, debris, dead cells, and cancer. Macrophages have a delicate task. It's crucial that they ignore healthy cells while on patrol, otherwise they could trigger an autoimmune response while performing their duties.
Published A new mechanism for shaping animal tissues



A key question that remains in biology and biophysics is how three-dimensional tissue shapes emerge during animal development. Research teams have now found a mechanism by which tissues can be 'programmed' to transition from a flat state to a three-dimensional shape.
Published Largest protein yet discovered builds algal toxins



While seeking to unravel how marine algae create their chemically complex toxins, scientists have discovered the largest protein yet identified in biology. Uncovering the biological machinery the algae evolved to make its intricate toxin also revealed previously unknown strategies for assembling chemicals, which could unlock the development of new medicines and materials.
Published Machine learning approach helps researchers design better gene-delivery vehicles for gene therapy



Gene therapy could potentially cure genetic diseases but it remains a challenge to package and deliver new genes to specific cells safely and effectively. Existing methods of engineering one of the most commonly used gene-delivery vehicles, adeno-associated viruses (AAV), are often slow and inefficient. Now, researchers have developed a machine-learning approach that promises to speed up AAV engineering for gene therapy. The tool helps researchers engineer the protein shells of AAVs, called capsids, to have multiple desirable traits, such as the ability to deliver cargo to a specific organ but not others or to work in multiple species. Other methods only look for capsids that have one trait at a time.
Published Bacteria encode hidden genes outside their genome--do we?



A 'loopy' discovery in bacteria is raising fundamental questions about the makeup of our own genome -- and revealing a potential wellspring of material for new genetic therapies.
Published Researchers develop AI model that predicts the accuracy of protein--DNA binding



A new artificial intelligence model can predict how different proteins may bind to DNA.
Published Greenland mega-tsunami led to week-long oscillating fjord wave



In September 2023, a megatsunami in remote eastern Greenland sent seismic waves around the world, piquing the interest of the global research community. The event created a week-long oscillating wave in Dickson Fjord, according to a new report in The Seismic Record.
Published How do butterflies stick to branches during metamorphosis?



Most of us learned about butterfly metamorphosis as a kid -- a wriggly caterpillar molts its skin to form a tough chrysalis and emerges as a beautiful butterfly. But how exactly do chrysalises stay anchored as the butterfly brews within? Research shows that, despite their silks being weak and thin on their own, caterpillars can expertly spin them into chrysalis support structures resembling hook-and-loop fasteners and multi-strand safety tethers.
Published 3D laser printing with bioinks from microalgae



Microalgae such as the diatom Odontella aurita and the green alga Tetraselmis striata are especially suitable as 'biofactories' for the production of sustainable materials for 3D laser printing due to their high content in lipids and photoactive pigments. An international research team has succeeded for the first time in manufacturing inks for printing complex biocompatible 3D microstructures from the raw materials extracted from the microalgae.
Published Researchers make breakthrough in understanding species abundance



The key finding was that temperature and genome size, not body size, had the greatest influence on the maximum population growth rate of the diatoms. Yet body size still mattered in colder latitudes, conserving Bermann's Rule.
Published Researchers crack a key celiac mystery



An interdisciplinary team of medical and engineering researchers has spent the last six years working to unlock a significant piece of the puzzle in the search for a cure: how and where the gluten response begins.
Published Finding pearls in the mud: Eco-friendly tungsten recovery from semiconductor waste



Semiconductor industry waste is typically seen as a costly disposal problem and an environmental hazard. But what if this waste could be transformed into a valuable resource? In an exciting development, researchers have unveiled an eco-friendly method to extract rare metals from semiconductor waste. This innovative approach not only recovers precious tungsten but also assesses its economic viability, offering a sustainable solution for waste management in the tech industry.