Showing 20 articles starting at article 1381
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Geoscience: Landslides
Published How the flu virus hacks our cells



Influenza epidemics, caused by influenza A or B viruses, result in acute respiratory infection. They kill half a million people worldwide every year. These viruses can also wreak havoc on animals, as in the case of avian flu. A team has now identified how the influenza A virus manages to penetrate cells to infect them. By attaching itself to a receptor on the cell surface, it hijacks the iron transport mechanism to start its infection cycle. By blocking the receptor involved, the researchers were also able to significantly reduce its ability to invade cells. These results highlight a vulnerability that could be exploited to combat the virus.
Published Plants can distinguish when touch starts and stops, study suggests



Even without nerves, plants can sense when something touches them and when it lets go, a study has found. In a set of experiments, individual plant cells responded to the touch of a very fine glass rod by sending slow waves of calcium signals to other plant cells, and when that pressure was released, they sent much more rapid waves. While scientists have known that plants can respond to touch, this study shows that plant cells send different signals when touch is initiated and ended.
Published Eat right, live longer: Could a moderate protein diet be the coveted elixir of youth?



Consuming nutritious food can improve metabolic health and delay aging. But what are the appropriate quantities of dietary macronutrients that can help achieve this? To answer this, researchers fed isocaloric diets with varying amounts of protein to young and middle-aged male mice. They found that the mice were metabolically healthier when fed moderate-protein diets. These findings could provide valuable insights into developing nutritional interventions and improving metabolic health in people.
Published Researchers use 'natural' system to identify proteins most useful for developing an effective HIV vaccine



Scientists have spent years trying to develop an effective HIV vaccine, but none have proven successful. Based on findings from a recently published study, a research team may have put science one step closer to that goal.
Published Light conveyed by the signal transmitting molecule sucrose controls growth of plant roots



Researchers shows how information about the quantity of absorbed light passes from the leaves to the roots. Photosynthetic sucrose not only supplies roots with carbohydrates but also acts as a signal transmitter for light-dependent root architecture.
Published Mitigating climate change through restoration of coastal ecosystems



Researchers are proposing a novel pathway through which coastal ecosystem restoration can permanently capture carbon dioxide from the atmosphere. Seagrass and mangroves -- known as blue carbon ecosystems -- naturally capture carbon through photosynthesis, which converts carbon dioxide into living tissue.
Published That's not nuts: Almond milk yogurt packs an overall greater nutritional punch than dairy-based



In a nutritional comparison of plant-based and dairy yogurts, almond milk yogurt came out on top, according to new research.
Published Scientists unveil RNA-guided mechanisms driving cell fate



The early stages of embryonic development contain many of life's mysteries. Unlocking these mysteries can help us better understand early development and birth defects, and help develop new regenerative medicine treatments. Researchers have now characterized a critical time in mammalian embryonic development using powerful and innovative imaging techniques.
Published Evolution driving improvements in racehorse speed



A new study has found that genetic improvement is underlying the increasing speed of Britain's thoroughbreds. This contrasts with earlier studies that suggested racehorses were showing no genetic improvement in response to selection by breeders.
Published Groundbreaking images of root chemicals offer new insights on plant growth



Applying imaging technology to plant roots, researchers have developed a new understanding of chemicals that are responsible for plant growth. The chemical 'roadmap' identifies where key molecules are distributed along corn roots and how their placement factors into the plant's maturation.
Published Protein-based nano-'computer' evolves in ability to influence cell behavior



The first protein-based nano-computing agent that functions as a circuit has been created. The milestone puts them one step closer to developing next-generation cell-based therapies to treat diseases like diabetes and cancer.
Published Research offers clues for potential widespread HIV cure in people



New animal research is helping explain why at least five people have become HIV-free after receiving a stem cell transplant, and may bring scientists closer to developing what they hope will be a widespread cure for the virus that causes AIDS. A new study describes how two nonhuman primates were cured of the monkey form of HIV after receiving a stem cell transplant. It also reveals that two circumstances must co-exist for a cure to occur and documents the order in which HIV is cleared from the body.
Published River erosion can shape fish evolution



A new study of the freshwater greenfin darter fish suggests river erosion can be a driver of biodiversity in tectonically inactive regions.
Published How sweet it is: The fruit fly gut influences reproduction by 'tasting' fructose



A research group has found that in fruit flies (Drosophila melanogaster), circulating fructose derived from dietary sugar is needed for enhanced egg production after mating. In this species, circulating fructose is required for an increase in germline stem cells, which divide into reproductive cells. This increase leads to enhanced post-mating egg production. These findings may help to determine whether fructose influences the reproduction of mammals, including humans.
Published Researchers successfully induce primate oocytes in the lab



The many types of cells in the human body are produced through the process of differentiation, in which stem cells are converted to more specialized types. Currently, it is challenging for researchers to control the differentiation of stem cells in the lab (in vitro). Of particular interest are oocytes, which are female germ cells that develop into eggs. Understanding their development could have far-ranging impacts, from infertility treatment to conservation of endangered species. A new study has successfully induced meiotic (dividing) oocytes from the embryonic stem cells of cynomolgus monkeys, which share many physiological traits with humans. By establishing a culture method for inducing the differentiation of meiotic oocytes, the researchers aimed to shed light on germ cell development in both humans and other primates.
Published The fast and the fibrous: Developing the muscles you need for speed



Researchers have identified the role of the large Maf transcription factor family in regulating fast twitch muscle fibers. A mouse model lacking Maf expression in the skeletal muscles exhibited a significant loss of type IIb myofibers, a subtype of fast twitch fibers. Overexpression of large Mafs promoted type IIb muscle fiber induction. The large Maf family may represent potential targets for developing treatments for muscular disorders involving fast twitch fibers.
Published Gene editing tool could help reduce spread of antimicrobial resistance



A new tool which could help reduce the spread of antimicrobial resistance is showing early promise, through exploiting a bacterial immune system as a gene editing tool.
Published Deadly virus structures point toward new avenues for vaccine design



By comparing the structures of protein complexes from different lineages of the dangerous Lassa virus, a team identified new antibodies and vaccine targets.
Published How tasty is the food?



A hormone and specialized brain cells regulate feeding behavior in mice.
Published Failed antibiotic now a game changing weed killer for farmers



Weed killers of the future could soon be based on failed antibiotics. Researchers have found a molecule which was initially developed to treat tuberculosis but failed to progress out of the lab as an antibiotic is now showing promise as a powerful foe for weeds that invade our gardens and cost farmers billions of dollars each year.