Showing 20 articles starting at article 1021

< Previous 20 articles        Next 20 articles >

Categories: Biology: Cell Biology, Geoscience: Geochemistry

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New disease testing component facilitates lower-cost diagnostics      (via sciencedaily.com)     Original source 

Biomedical researchers have developed a new, less expensive way to detect nuclease digestion -- one of the critical steps in many nucleic acid sensing applications, such as those used to identify COVID-19 and other infectious diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Geoscience: Environmental Issues
Published

First DNA study of ancient Eastern Arabians reveals malaria adaptation      (via sciencedaily.com)     Original source 

People living in ancient Eastern Arabia appear to have developed resistance to malaria following the appearance of agriculture in the region around five thousand years ago.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Low-Temperature Plasma used to remove E. coli from hydroponically grown crops      (via sciencedaily.com)     Original source 

In a new study, a team sterilized a hydroponic nutrient solution using low-temperature plasma generated from electricity and the oxygen in the atmosphere. This new sterilization technique may allow farmers to grow crops without the use of chemical pesticides, representing an important advance in agricultural technology for sustainable crop production.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New discovery shows how cells defend themselves during stressful situations      (via sciencedaily.com)     Original source 

A recent study has unveiled an exciting discovery about how our cells defend themselves during stressful situations. The research shows that a tiny modification in the genetic material, called ac4C, acts as a crucial defender, helping cells create protective storage units known as stress granules. These stress granules safeguard important genetic instructions when the cell is facing challenges. The new findings could help shed light on relevant molecular pathways that could be targeted in disease.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

Scientists use blue-green algae as a surrogate mother for 'meat-like' proteins      (via sciencedaily.com)     Original source 

Researchers have not only succeeded in using blue-green algae as a surrogate mother for a new protein -- they have even coaxed the microalgae to produce 'meat fiber-like' protein strands. The achievement may be the key to sustainable foods that have both the 'right' texture and require minimal processing.

Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

Scientists propose new method for tracking elusive origins of CO2 emissions from streams      (via sciencedaily.com)     Original source 

A team of researchers that specializes in accounting for the carbon dioxide release by streams, rivers and lakes recently demonstrated that the chemical process known as 'carbonate buffering' can account for the majority of emissions in highly alkaline waters. Furthermore, carbonate buffering distorts the most commonly used method of tracking the origins of CO2 in streams. The research proposes a better method for tracking the origin of riverine CO2 emissions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

Human stem cells coaxed to mimic the very early central nervous system      (via sciencedaily.com)     Original source 

The first stem cell culture method that produces a full model of the early stages of the human central nervous system has been developed by a team of engineers and biologists.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Cutting-edge 'protein lawnmower' created      (via sciencedaily.com)     Original source 

Scientists have designed the first synthetic protein-based motor which harnesses biological reactions to fuel and propel itself. 'Imagine if a Roomba could be powered only by the dirt it picks up,' says one of the authors of the study. The motor uses the digestive enzyme trypsin to cut the peptides and convert them into the energy it needs to propel itself.

Chemistry: Biochemistry Chemistry: General Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Black carbon sensor could fill massive monitoring gaps      (via sciencedaily.com)     Original source 

Black carbon is up to 25 times more hazardous to human health than other airborne particles of a similar size. Standard sensors are expensive and burdensome, resulting in sparse coverage in regions infamous for poor air quality, such as the greater Salt Lake City area. A University of Utah-led study found that a portable, more affordable sensor recorded black carbon concentrations as accurately as the most widely used instrument for monitoring black carbon in real time. The portable sensor could help expand an accurate observation network to establish disease risk and create effective public health policies.

Biology: Biochemistry Biology: Cell Biology Biology: General
Published

Obesity disrupts normal liver function in mice      (via sciencedaily.com)     Original source 

Your liver plays a vital role in your metabolism, the biological process which converts food into energy. We know that being overweight can negatively affect metabolic activity, but not exactly how. To better understand this, researchers compared the livers of mice which were a typical weight with mice which were obese. They were surprised to find that biological regulation of metabolic activity, after a period of feasting and fasting, was reversed between them. In typical mice, allosteric regulation (the process which controls metabolism) was inhibited during feeding and activated when fasting. However, in obese mice, allosteric regulation increased during feeding and decreased when fasting.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

Blindness from some inherited eye diseases may be caused by gut bacteria      (via sciencedaily.com)     Original source 

Sight loss in certain inherited eye diseases may be caused by gut bacteria, and is potentially treatable by antimicrobials, finds a new study in mice.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

The small intestine adapt its size according to nutrient intake      (via sciencedaily.com)     Original source 

Resizing of the intestine is a highly conserved strategy employed by a wide range of organisms to cope with fluctuation in nutrient availability. Nevertheless, very little is known about the mechanisms and signals underlying nutrient-mediated gut resizing. New research has identified one of the signaling pathways implicated in this process.

Biology: General Biology: Microbiology Ecology: Nature Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Global warming increases the diversity of active soil bacteria      (via sciencedaily.com)     Original source 

Warmer soils harbor a greater diversity of active microbes, according to a new study. The study represents a significant shift in our understanding of how microbial activity in the soil influences the global carbon cycle and possible feedback mechanisms on the climate. Until now, scientists have assumed that higher soil temperatures accelerate the growth of microbes, thus increasing the release of carbon into the atmosphere. However, this increased release of carbon is actually caused by the activation of previously dormant bacteria.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Ecology: Animals Ecology: Endangered Species Environmental: General Geoscience: Environmental Issues
Published

Common plant could help reduce food insecurity      (via sciencedaily.com)     Original source 

An often-overlooked water plant that can double its biomass in two days, capture nitrogen from the air -- making it a valuable green fertilizer -- and be fed to poultry and livestock could serve as life-saving food for humans in the event of a catastrophe or disaster, a new study suggests.

Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

Biomolecular condensates -- regulatory hubs for plant iron supply      (via sciencedaily.com)     Original source 

Iron is a micronutrient for plants. Biologists now show that regulatory proteins for iron uptake behave particularly dynamically in the cell nucleus when the cells are exposed to blue light -- an important signal for plant growth. They found that the initially homogeneously distributed proteins relocated together into 'biomolecular condensates' in the cell nucleus shortly after this exposure.

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General
Published

Using mussels and silkworm cocoons to stop organ bleeding      (via sciencedaily.com)     Original source 

A collaborative research team develops an absorbent multifunctional nanofiber adhesive hemostat based on a protein biomaterial.