Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Geoscience: Geochemistry
Published High school student helps transform 'crazy idea' into innovative research tool



A 'crazy idea' hatched during a walk in the woods and first tested by a high school student is now an innovative research tool used by scientists worldwide to predict neurotransmitters in fruit fly connectomes.
Published New sex-determining mechanism in African butterfly discovered



In a study of a species of African butterfly, researchers have discovered a previously undescribed molecular mechanism of how the sex of an embryo is initially specified.
Published Getting dirty to clean up the chemical industry's environmental impact



The global chemical industry is a major fossil fuel consumer and climate change contributor; however, new research has identified how the sector could clean up its green credentials by getting dirty.
Published Fluidic systems resembling blood vascular tissues: Artificial blood vessels and biomedicine



Nature has consistently inspired engineering applications. Recently, a group of researchers drew new inspirations from the vascular network and developed a new type of fluidic system named VasFluidics.
Published An epigenome editing toolkit to dissect the mechanisms of gene regulation



A recent study led to the development of a powerful epigenetic editing technology. The system unlocks the ability to precisely program chromatin modifications at any specific position in the genome, to understand their causal role in transcription regulation. This innovative approach will help to investigate the role of chromatin modifications in many biological processes, and to program desired gene activity responses, which may prove useful in disease settings.
Published An adjuvant made in yeast could lower vaccine cost and boost availability



Adjuvants make vaccines more effective, though one of the best is an expensive extract from the soap bark tree. To lower the cost and avoid the laborious extraction process from bark, synthetic biologists introduced 38 separate genes into yeast to recreate the synthesis of the active molecule, a complex chemical, QS-21, that has a terpene core and numerous sugars. This may be the longest biosynthetic pathway ever inserted into yeast.
Published Marine bacteria team up to produce a vital vitamin



Two species of marine bacteria from the North Sea have established an unusual and sometimes destructive relationship to produce the important vitamin B12. The team's experiments show that the two microbial species have developed a coordinated strategy to obtain the scarce but essential vitamin.
Published Limited adaptability makes freshwater bacteria vulnerable to climate change



Freshwater bacteria with small genomes frequently undergo prolonged periods of adaptive stagnation. Based on genomic analyses of samples from European lakes, researchers uncovered specific evolutionary strategies that shape these bacteria's lifestyles. Understanding the evolutionary dynamics of aquatic microbial communities is key to safeguarding ecosystem services.
Published Why is breaking down plant material for biofuels so slow?



Tracking individual enzymes during the breakdown of cellulose for biofuel production has revealed how several roadblocks slow this process when using plant material that might otherwise go to waste. The research may lead to new ways to improve the breakdown process and make the non-edible parts of plants and other plant waste, such as forestry residue, a more competitive source of biofuels.
Published Researchers show that slow-moving earthquakes are controlled by rock permeability



A research group explores how the makeup of rocks, specifically their permeability -- or how easily fluids can flow through them -- affects the frequency and intensity of slow slip events. Slow slips' role in the earthquake cycle may help lead to a better model to predict when earthquakes happen.
Published Intermittent fasting protects against liver inflammation and liver cancer



Fatty liver disease often leads to chronic liver inflammation and can even result in liver cancer. Scientists have now shown in mice that intermittent fasting on a 5:2 schedule can halt this development. The fasting regime reduces the development of liver cancer in mice with pre-existing liver inflammation. The researchers identified two proteins in liver cells that are jointly responsible for the protective effect of fasting. An approved drug can partially mimic this effect.
Published Fruit fly model identifies key regulators behind organ development



A new computational model simulating fruit fly wing development has enabled researchers to identify previously hidden mechanisms behind organ generation. An research team developed a fruit fly model to reverse engineer the mechanisms that generate organ tissue.
Published Progression of herpesvirus infection remodels mitochondrial organization and metabolism



Researchers have found that herpesvirus infection modifies the structure and normal function of the mitochondria in the host cell. The new information will help to understand the interaction between herpesvirus and host cells. Knowledge can be utilized in the development of viral treatments.
Published How a 'conductor' makes sense of chaos in early mouse embryos



The earliest stages of mammalian embryo development are like an orchestra performance, where everyone must play at the exact right moment and in perfect harmony. New research identifies one of the conductors making sense of the chaos.
Published From fossils to fuel: Mozambique's Maniamba Basin's energy potential



In the ever-expanding search for energy resources, a new study has emerged from Mozambique's Maniamba Basin. Mozambique's Maniamba Basin could be a big source of natural gas.
Published Free-forming organelles help plants adapt to climate change



Plants' ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their cells whose function was, until now, a mystery. Researchers have now determined how these structures work on a molecular level, as well as where and how they form.
Published The Clues for Cleaner Water



By using experimental electrochemical analyses, mass spectrometry, and computational quantum chemistry modeling, the researchers created an 'atomic-scale storyline' to explain how ozone is generated on NATO electrocatalysts. They identified that some of the nickel in NATO is probably leaching out of the electrodes via corrosion, and these nickel atoms, now floating in the solution near the catalyst, can promote chemical reactions that eventually generate ozone.
Published Using advanced genetic techniques, scientists create mice with traits of Tourette disorder



In research that may be a step forward toward finding personalized treatments for Tourette disorder, scientists have bred mice that exhibit some of the same behaviors and brain abnormalities seen in humans with the disorder.
Published New vaccine effective against coronaviruses that haven't even emerged yet



Researchers have developed a new vaccine technology that has been shown in mice to provide protection against a broad range of coronaviruses with potential for future disease outbreaks -- including ones we don't even know about.
Published High-pressure spectroscopy: Why 3,000 bars are needed to take a comprehensive look at a protein



Why 3,000 bars are needed to take a comprehensive look at a protein: Researchers present a new high-pressure spectroscopy method to unravel the properties of proteins' native structures.