Showing 20 articles starting at article 661
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Space: Exploration
Published Starving cells hijack protein transport stations



Study details how nutrient-starved cells divert protein transport stations to cellular recycling centers to be broken down, highlighting a novel approach cells use to deal with stressful conditions.
Published Cell's 'garbage disposal' may have another role: Helping neurons near skin sense the environment



The typical job of the proteasome, the garbage disposal of the cell, is to grind down proteins into smaller bits and recycle some of those bits and parts. That's still the case, for the most part, but researchers, studying nerve cells grown in the lab and mice, say that the proteasome's role may go well beyond that.
Published How seaweed became multicellular



A deep dive into macroalgae genetics has uncovered the genetic underpinnings that enabled macroalgae, or 'seaweed,' to evolve multicellularity. Three lineages of macroalgae developed multicellularity independently and during very different time periods by acquiring genes that enable cell adhesion, extracellular matrix formation, and cell differentiation, researchers report. Surprisingly, many of these multicellular-enabling genes had viral origins. The study, which increased the total number of sequenced macroalgal genomes from 14 to 124, is the first to investigate macroalgal evolution through the lens of genomics.
Published Microbial food as a strategy food production of the future



Scientists have summarized microbial food production strategies.
Published Decoding the language of cells: Unveiling the proteins behind cellular organelle communication



A collaboration unveils a novel strategy for identifying key proteins in organelle communication. This approach advances our ability to pinpoint proteins essential for organelle interactions within specific spatial and temporal contexts.
Published Brightest gamma-ray burst of all time came from the collapse of a massive star



In 2022, astronomers discovered the brightest gamma-ray burst (GRB) of all time. Now, astronomers confirm that a 'normal' supernova, the telltale sign of a stellar collapse, accompanied the GRB. The team also looked for signatures of heavy elements like gold and platinum in the supernova. They found no evidence of such elements, deepening the mystery of their origins.
Published Stellar winds of three sun-like stars detected for the first time



An international research team has for the first time directly detected stellar winds from three Sun-like stars by recording the X-ray emission from their astrospheres, and placed constraints on the mass loss rate of the stars via their stellar winds.
Published Innovative antiviral defense with new CRISPR tool



The rise of RNA viruses like SARS-CoV-2 highlights the need for new ways to fight them. RNA-targeting tools like CRISPR/Cas13 are powerful but inefficient in the cytoplasm of cells, where many RNA viruses replicate. Scientists have devised a solution: Cas13d-NCS. This new molecular tool allows CRISPR RNA molecules that are located within the nucleus of a cell to move to the cytoplasm, making it highly effective at neutralizing RNA viruses. This advancement opens doors for precision medicine and proactive viral defense strategies.
Published Exoplanets true to size



A star's magnetic field must be considered in order to correctly determine the characteristics of exoplanets from observations by space telescopes such as Kepler, James Webb, or PLATO. Researchers show that the distribution of the star's brightness over its disk depends on the star's level of magnetic activity. This, in turn, affects the signature of an exoplanet in observational data. The new model must be used in order to properly interpret the data from the latest generation of space telescopes pointed at distant worlds outside our Solar System.
Published Researchers identify new genetic risk factors for persistent HPV infections



Human papillomavirus (HPV) is the second most common cancer-causing virus, accounting for 690,000 cervical and other cancers each year worldwide. While the immune system usually clears HPV infections, those that persist can lead to cancer, and a new finding suggests that certain women may have a genetic susceptibility for persistent or frequent HPV infections. These genetic variants could raise a woman's risk of getting cervical cancer from a high-risk HPV infection.
Published Beautiful nebula, violent history: Clash of stars solves stellar mystery



When astronomers looked at a stellar pair at the heart of a stunning cloud of gas and dust, they were in for a surprise. Star pairs are typically very similar, like twins, but in HD 148937, one star appears younger and, unlike the other, is magnetic. New data suggest there were originally three stars in the system, until two of them clashed and merged. This violent event created the surrounding cloud and forever altered the system's fate.
Published First step to untangle DNA: Supercoiled DNA captures gyrase like a lasso ropes cattle



Researchers reveal how DNA gyrase resolves DNA entanglements. The findings not only provide novel insights into this fundamental biological mechanism but also have potential practical applications. Gyrases are biomedical targets for the treatment of bacterial infections and the similar human versions of the enzymes are targets for many anti-cancer drugs. Better understanding of how gyrases work at the molecular level can potentially improve clinical treatments.
Published New approach for combating 'resting' bacteria



Most disease-causing bacteria are known for their speed: In mere minutes, they can double their population, quickly making a person sick. But just as dangerous as this rapid growth can be a bacterium's resting state, which helps the pathogen evade antibiotics and contributes to severe chronic infections in the lungs and blood, within wounds, and on the surfaces of medical devices. Now, scientists have discovered how long chains of molecules called polyphosphates (polyP) are needed for bacteria to slow down movements within cells and let them enter this resting state.
Published Tropical coral-infecting parasites discovered in cold marine ecosystems



Parasites thought only to infect tropical coral reefs have been discovered in a large variety of creatures in cold marine ecosystems along the Northeast Pacific, according to new research.
Published Method to extract useful proteins from beer-brewing leftovers



Researchers have created a method that extracts over 80 percent of the available protein in grain leftovers from brewing beer, commonly known as brewers' spent grain.
Published Twinkle twinkle baby star, 'sneezes' tell us how you are



Researchers have found that baby stars discharge plumes of gas, dust, and magnetic flux from their protostellar disk. The protostellar disk that surrounds developing stars are constantly penetrated by magnetic flux, and if too much magnetic flux remained, the resulting object would generate a magnetic field stronger than any observed protostar. These newly discovered discharges of magnetic flux, or 'sneezes' as the researchers describes them, may be a vital step in proper star formation.
Published Genetic underpinnings of environmental stress identified in model plant



Researchers have identified 14 genes that thale cress -- a plant commonly used in genetic investigations since its genome is well documented -- express more when responding to five specific stressors, as well as eight genes that the plant suppresses.
Published Geobiology: New placozoan habitat discovered



Traces of DNA in the stomachs of predatory snails give a team og geobiologists new insights into the ecology of placozoans.
Published New drug prevents flu-related inflammation and lung damage



Findings show a newly created drug can prevent runaway inflammation while still allowing the immune system to handle the virus, even when given late into infection.
Published The genesis of our cellular skeleton, image by image



Cells contain various specialized structures -- such as the nucleus, mitochondria or peroxisomes -- known as 'organelles'. Tracing their genesis and determining their structure is fundamental to understanding cell function and the pathologies linked to their dysfunction.