Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Anthropology: Cultures, Biology: Cell Biology
Published Greek Island was home to Bronze Age purple dye workshop



The Greek island of Aegina was home to a Late Bronze Age purple dye workshop, according to a new study.
Published The gender gap in life expectancy: Are eggs and sperm partly responsible?



Researchers have found that germ cells, which develop into eggs and sperm, drive sex-dependent differences in lifespan in vertebrates. Female and male germ cells increase and reduce lifespan, respectively. These effects are controlled via estrogen and growth factor hormones in females and vitamin D in males. Vitamin D supplementation extends lifespan in both males and females. The results clarify the link between reproduction and aging and show that vitamin D may improve longevity in vertebrates.
Published Are plants intelligent? It depends on the definition



Goldenrod can perceive other plants nearby without ever touching them, by sensing far-red light ratios reflected off leaves. When goldenrod is eaten by herbivores, it adapts its response based on whether or not another plant is nearby. Is this kind of flexible, real-time, adaptive response a sign of intelligence in plants?
Published Study shows role of fathers in seeding the microbiota of newborns and confirms benefits of maternal fecal microbiota transplants



A mother's contribution to the makeup of a newborn baby's microbiota has been well documented. Now a new article shows the important contributions that fathers make to the composition of microorganisms colonizing a baby's gut as well. Furthermore, the study confirmed that maternal fecal microbiota transfer (FMT) in babies born by caesarean section can help to correct the microbiota disturbances often observed in babies who are not born vaginally.
Published New technique reveals earliest signs of genetic mutations



Mutations are changes in the molecular 'letters' that make up the DNA code, the blueprint for all living cells. Some of these changes can have little effect, but others can lead to diseases, including cancer. Now, a new study introduces an original technique, called HiDEF-seq, that can accurately detect the early molecular changes in DNA code that precede mutations.
Published Ritual sacrifice at Chichén Itzá



Rising to power in the wake of the Classic Maya collapse, Chichen Itz was among the largest and most influential cities of the ancient Maya, but much about its political connections and ritual life remain poorly understood. Close kin relationships, including two pairs of identical twins, suggests a connection to the Maya origin myths of the Popol Vuh.
Published Scientists engineer yellow-seeded camelina with high oil output



Using tools of modern genetics, plant biochemists have produced a new high-yielding oilseed crop variety -- a yellow-seeded variety of Camelina sativa, a close relative of canola, that accumulates 21.4% more oil than ordinary camelina.
Published Soil bacteria respire more CO2 after sugar-free meals



Researchers tracked how plant matter moves through bacteria's metabolism. Microbes respire three times as much carbon dioxide (CO2) from non-sugar carbons from lignin compared to sugar from cellulose. Although microbes consume both types of plant matter at the same time, each type enters a different metabolic pathway. Findings could improve predictions of how climate-dependent changes in soil carbon types will affect microbial CO2 production.
Published Virus-like nanoparticles control the multicellular organization and reproduction of host bacteria



Researchers have discovered that virus-like nanoparticles can promote the multicellular organization and reproduction of host bacteria. These particles, which are evolutionarily related to phages (viruses that infect bacteria), contain an enzyme that helps shape the multicellular architecture and ultimately enhances morphological differentiation.
Published Algae offer real potential as a renewable electricity source



The need to transition away from fossil fuels to more sustainable energy production is critical. That's why a team of researchers is looking at a potential power source that not only produces no carbon emissions but removes carbon as it works: algae.
Published Scientists unlock secrets of how archaea, the third domain of life, makes energy



An international scientific team has redefined our understanding of archaea, a microbial ancestor to humans from two billion years ago, by showing how they use hydrogen gas. The findings explain how these tiny lifeforms make energy by consuming and producing hydrogen. This simple but dependable strategy has allowed them to thrive in some of Earth's most hostile environments for billions of years.
Published Breakthrough in creating cyclic peptide opens the way for new antibiotics



A discovery could speed up efforts to produce new antibiotics in the fight against antimicrobial resistance.
Published Protein study could help researchers develop new antibiotics



A team has found a way to make the bacterial enzyme histidine kinase water-soluble, which could make it possible to rapidly screen potential antibiotics that might interfere with its functions.
Published How human derived RNA fragments help the Hepatitis E virus



Why does Hepatitis E become chronic in some patients, and why do medications not work? To find out, an international research team led by scientists from Bochum observed a patient with chronic Hepatitis E infection over a year. Repeated sequencing of the virus RNA showed that the virus incorporated various parts of the host's messenger RNA into its genome. This resulted in a replication advantage, which may have contributed to the infection becoming chronic.
Published Gut microbes from aged mice induce inflammation in young mice, study finds



When scientists transplanted the gut microbes of aged mice into young 'germ-free' mice -- raised to have no gut microbes of their own -- the recipient mice experienced an increase in inflammation that parallels inflammatory processes associated with aging in humans. Young germ-free mice transplanted with microbes from other young mice had no such increase.
Published A protein that enables smell--and stops cell death



While smell plays a considerable role in the social interactions of humans -- for instance, signaling fear or generating closeness -- for ants, it is vitally important. Researchers have found that a key protein named Orco, essential for the function of olfactory cells, is also critical for the cells' survival in ants.
Published Changes Upstream: RIPE team uses CRISPR/Cas9 to alter photosynthesis for the first time



Scientists used CRISPR/Cas9 to increase gene expression in rice by changing its upstream regulatory DNA. While other studies have used the technology to knock out or decrease the expression of genes, this study, is an unbiased gene-editing approach to increase gene expression and downstream photosynthetic activity. The approach is more difficult than transgenic breeding, but could potentially preempt regulatory issues by changing DNA already within the plant, allowing the plants to get in the hands of farmers sooner.
Published Fat molecule's inability to bond with shape-shifting protein in cell's powerhouse linked to an inherited metabolic disease



By studying mutations in yeast and human cells, scientists say they have found that biochemical bonds between fats and proteins in the mitochondrion, the cell's powerhouse, play a crucial role in how our cells produce energy.
Published Mushroom stump waste could be inexpensive, healthy chicken feed supplement



Feed costs for producing broiler chickens accounts for 60% to 70% of total production costs, and stump waste from the production of button mushrooms comprises nearly 30% of total mushroom weight. Marrying the two has the potential to reduce both cost and waste, especially in Pennsylvania, which is a national leader in the production of broiler chickens and button mushrooms.
Published Silkworms help grow better organ-like tissues in labs



Biomedical engineers have developed a silk-based, ultrathin membrane that can be used in organ-on-a-chip models to better mimic the natural environment of cells and tissues within the body. When used in a kidney organ-on-a-chip platform, the membrane helped tissues grow to recreate the functionality of both healthy and diseased kidneys.