Showing 20 articles starting at article 821
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Offbeat: Earth and Climate
Published Increasingly similar or different? Centuries-long analysis suggests biodiversity is differentiating and homogenizing to a comparable extent



The tendency of communities and the species within them to become more similar or more distinct across landscapes -- biotic homogenization and differentiation -- are approximately balanced, according to a new study. This analysis is the first of its kind to provide a comprehensive assessment of how local and regional biodiversity changes combine across landscapes over centuries.
Published Revealing what makes bacteria life-threatening



Researchers have discovered that a mutation in the cellulose making machinery of E. coli bacteria allows them to cause severe disease in people -- 'good' bacteria make cellulose and 'bad' bacteria can't. The mutations stopped the E. coli making the cell-surface carbohydrate cellulose and this led to increased inflammation in the intestinal tract of the host, resulting in a breakdown of the intestinal barrier, so the bacteria could spread through the body. Understanding how bacteria spread from intestinal reservoirs to the rest of the body is important in preventing infections and tackling antibiotic resistance.
Published Butterfly and moth genomes mostly unchanged despite 250 million years of evolution



Comparison of over 200 high-quality butterfly and moth genomes reveals key insights into their biology, evolution and diversification over the last 250 million years, as well as clues for conservation.
Published An awkward family reunion: Sea monsters are our cousins



The sea lamprey, a 500-million-year-old animal with a sharp-toothed suction cup for a mouth, is the thing of nightmares. A new study discovered that the hindbrain -- the part of the brain controlling vital functions like blood pressure and heart rate -- of both sea lampreys and humans is built using an extraordinarily similar molecular and genetic toolkit.
Published Kiss-and-tell: A new method for precision delivery of nanoparticles and small molecules to individual cells



The delivery of experimental materials to individual cells with exactness and exclusivity has long been an elusive and much sought-after ability in biology. With it comes the promise of deciphering many longstanding secrets of the cell. A research team has now successfully shown how small molecules and single nanoparticles can be applied directly onto the surface of cells. In the study the scientists describe their technique as a ' kiss' (microkiss) -- an easy and cost-effective new method, unlocking new possibilities in single-cell science with a view towards next generation therapeutic applications.
Published An environmentally friendly way to turn seafood waste into value-added products



Reduce, reuse, recycle, and repurpose: These are all ways we can live more sustainably. One tricky aspect of recycling, though, is that sometimes the recycling process is chemically intensive, and this is the case for recycling one of the world's most abundant materials -- chitin. Researchers have tackled this problem and found a way to sustainably recover chitin from seafood waste.
Published Toxic elements found in stranded whales, dolphins over 15 years



Researchers evaluated the prevalence, concentration and tissue distribution of essential and non-essential trace elements, including heavy metal toxicants in tissue (blubber, kidney, liver, skeletal muscle, skin) and fecal samples collected from 90 whales and dolphins stranded in Georgia and Florida from 2007 to 2021.
Published Links between human, canine brain tumors



Researchers have discovered that meningiomas -- the most common type of brain tumor in humans and dogs -- are extremely similar genetically.
Published New system triggers cellular waste disposal



Established treatments for cancer and other diseases often focus on inhibiting harmful enzymes to mitigate their effects. However, a more innovative approach has emerged: harnessing the cell's natural waste disposal system not just to deactivate but to entirely eradicate these proteins. Researchers have previously demonstrated the efficacy of this approach through two distinct methods. Now they unveil a third system capable of targeting and disposing of previously inaccessible proteins.
Published Detecting pathogens faster and more accurately by melting DNA



A new analysis method can detect pathogens in blood samples faster and more accurately than blood cultures, which are the current state of the art for infection diagnosis. The new method, called digital DNA melting analysis, can produce results in under six hours, whereas culture typically requires 15 hours to several days, depending on the pathogen.
Published Science fiction meets reality: New technique to overcome obstructed views



Using a single photograph, researchers created an algorithm that computes highly accurate, full-color three-dimensional reconstructions of areas behind obstacles -- a concept that can not only help prevent car crashes, but help law enforcement experts in hostage situations, search-and-rescue and strategic military efforts.
Published Bridging diet, microbes, and metabolism: Implications for metabolic disorders



Mounting evidence suggests that the secret to understanding human health and combating metabolic diseases lies hidden within the microscopic world of our gut bacteria. Recent research reveals that a specific fatty acid produced by gut bacteria directly influences fat metabolism in animals. This research is pivotal as it sheds light on the complex interplay between the diet, gut microbiota, and host metabolic health, offering insights that could open new avenues in our approach to managing metabolic disorders.
Published Giant new snake species identified in the Amazon



A team of scientists on location with a film crew in the remote Amazon has uncovered a previously undocumented species of giant anaconda.
Published Photosynthetic mechanism of purple sulfur bacterium adapted to low-calcium environments



Purple sulfur bacteria (PSB) convert light energy into chemical energy through photosynthesis. Interestingly, certain species can photosynthesize even in environments with low-calcium levels. Using cryo-electron microscopy, researchers unveiled the structure of light-harvesting complexes and elucidated the mechanism that facilitates photosynthesis under low-calcium conditions.
Published Breakthrough in developing the PD-1-enhanced DNA vaccine for over 6-year cART-free AIDS prevention and virologic control



Researchers found that PD-1-enhanced DNA vaccination can induce sustained virus-specific CD8+ T cell immunity in an AIDS monkey model. The vaccinated monkeys remained free of AIDS for six years and achieved virologic control without the need for combination antiretroviral therapy (cART), a treatment used to suppress viral replication in individuals living with human immunodeficiency virus (HIV). The study also found that polyfunctional and broadly reactive effector-memory virus-specific T cells were maintained in the protected experimental macaques for over six years. The findings provide supporting evidence that the PD-1-enhanced DNA vaccine strategy holds promise as a third-generation DNA vaccine for AIDS prevention and immunotherapy.
Published Researchers are using RNA in a new approach to fight HIV



A pharmacy associate professor has developed a novel nanomedicine loaded with genetic material called small interfering RNAs (siRNA) to fight human immunodeficiency virus (HIV) using gene therapy.
Published Using metabolomics for assessing safety of chemicals may reduce the use of lab rats



Scientists have discovered a more robust way of grouping chemicals and using read-across for toxicological data to meet regulatory requirements, which could greatly reduce animal testing.
Published It's the spin that makes the difference



Biomolecules such as amino acids and sugars occur in two mirror-image forms -- in all living organisms, however, only one is ever found. Why this is the case is still unclear. Researchers have now found evidence that the interplay between electric and magnetic fields could be at the origin of this phenomenon.
Published New model identifies drugs that shouldn't be taken together



Researchers have developed a multipronged strategy to identify the transporters used by different drugs. Their approach, which makes use of both tissue models and machine-learning algorithms, has already revealed that a commonly prescribed antibiotic and a blood-thinner can interfere with each other.
Published Study reveals molecular mechanisms behind hibernation in mammals



Researchers have characterized changes in the structure of motor proteins, called myosins, and energy consumption that occur during hibernation, highlighting key differences in large and small hibernators.