Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Chemistry: Biochemistry
Published It's got praying mantis eyes



The praying mantis is one of the few insects with compound eyes and the ability to perceive 3D space. Engineers are replicating their visual systems to make machines see better.
Published New groups of methane-producing organisms in Yellowstone



The team verified that microbes found in Yellowstone National Park hot springs produce methane to grow.
Published Daily rhythms depend on receptor density in biological clock



Tweaking the numbers of receptors in a key brain area changes the daily rhythms of rest and wake in mice.
Published Researchers are closing in on a mouse model for late-onset Alzheimer's



Researchers are working to create the first strain of mice that's genetically susceptible to late-onset Alzheimer's, with potentially transformative implications for dementia research.
Published Proof-of-concept study to find functional cure for HIV



Researchers conducted a breakthrough proof-of-concept study that found an HIV-like virus particle that could cease the need for lifelong medications.
Published Nanoscale device simultaneously steers and shifts frequency of optical light, pointing the way to future wireless communication channels



A tunable metasurface can control optical light in space and time, offering a path toward new ways of wirelessly and securely transmitting large amounts of data both on Earth and in space.
Published Traffic-related ultrafine particles hinder mitochondrial functions in olfactory mucosa



Ultrafine particles, UFPs, the smallest contributors to air pollution, hinder the function of mitochondria in human olfactory mucosa cells, a new study shows. The study showed that traffic-related UFPs impair mitochondrial functions in primary human olfactory mucosa cells by hampering oxidative phosphorylation and redox balance.
Published Research sheds light on the role of PTPRK in tissue repair and cancer



New research has advanced our knowledge of multiple roles for PTPRK, a receptor tyrosine phosphatase linked to the regulation of cell-cell adhesion, growth factor signalling and tumor suppression. Through a characterization of the function of PTPRK in human cell lines and mice, the team distinguished catalytic and non-catalytic functions of PTPRK. The findings extend what is known about the signalling mechanisms involving PTPRK as a phosphatase and its role in colorectal health but also shed new light on the extent of its function via non-catalytic signalling mechanisms.
Published A new way to make element 116 opens the door to heavier atoms



Researchers have successfully made super-heavy element 116 using a beam of titanium-50. That milestone sets the team up to attempt making the heaviest element yet: 120.
Published Researchers develop more environmentally friendly and cost-effective method for soil remediation



Chemists have developed a rapid electrothermal mineralization (REM) process, which in seconds can remediate the accumulation of synthetic chemicals that can contaminate soil and the environment.
Published Nanoscopic imaging aids in understanding protein, tissue preservation in ancient bones



A pilot study shows that nanoscopic 3-D imaging of ancient bone not only provides further insight into the changes soft tissues undergo during fossilization, it also has potential as a fast, practical way to determine which specimens are likely candidates for ancient DNA and protein sequence preservation.
Published Pioneering the cellular frontier



Scientists use a multimodal approach that combines hard X-ray computed tomography and X-ray fluorescence imaging to see the structure and chemical processes inside of a single cell.
Published Converting captured carbon to fuel: Study assesses what's practical and what's not



A new analysis sheds light on major shortfalls of a recently proposed approach to capture CO2 from air and directly convert it to fuel using electricity. The authors also provide a new, more sustainable, alternative.
Published Organs on demand? Scientists print voxel building blocks



Scientists are bioprinting 3D structures with a material that is a close match for human tissue, paving the way for true biomanufacturing.
Published Researchers clarify how soft materials fail under stress



Understanding how soft materials fail under stress is critical for solving engineering challenges as disparate as pharmaceutical technology and landslide prevention. A new study linking a spectrum of soft material behaviors -- previously thought to be unrelated -- led researchers to identify a new parameter they call the brittility factor, which allows them to simplify soft material failure behavior. This will ultimately help engineers design better materials that meet future challenges.
Published Waste Styrofoam can now be converted into polymers for electronics



A new study describes a chemical reaction that can convert Styrofoam into a high-value conducting polymer known as PEDOT:PSS. Researchers also noted that the upgraded plastic waste can be successfully incorporated into functional electronic devices, including silicon-based hybrid solar cells and organic electrochemical transistors.
Published Shining light on amyloid architecture



Researchers use microscopy to chart amyloid beta's underlying structure and yield insight into neurodegenerative disease.
Published Chemists design novel method for generating sustainable fuel



Chemists have been working to synthesize high-value materials from waste molecules for years.
Published The rhythm led by plants is crucial for symbiosis with nutrient-providing bacteria



Recent research on Lotus japonicus, a model leguminous plant, has unveiled that the interaction between legume roots and rhizobia is characterized by periodic gene expression with a six-hour rhythm. This rhythmic gene expression influences the regions of the root susceptible to rhizobial infection and the distribution of nodules. It was also discovered that the plant hormone cytokinin is crucial for maintaining this gene expression rhythm.
Published Converting wastewater to fertilizer with fungal treatment



Creating fertilizers from organic waste can help reduce the consumption of fossil fuels and promote sustainable production. One way of doing this is through hydrothermal liquefaction (HTL), which converts biomass into biocrude oil through a high-temperature, high-pressure process. Two studies explore the use of a fungal treatment to convert the leftover wastewater into fertilizer for agricultural crops.