Showing 20 articles starting at article 101

< Previous 20 articles        Next 20 articles >

Categories: Biology: Cell Biology

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Coinfecting viruses impede each other's ability to enter cells      (via sciencedaily.com)     Original source 

The process by which phages -- viruses that infect and replicate within bacteria -- enter cells has been studied for over 50 years. In a new study, researchers have used cutting-edge techniques to look at this process at the level of a single cell.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Ancient Antarctic microorganisms are aggressive predators      (via sciencedaily.com)     Original source 

Antarctic dwelling single-celled microorganisms called archaea can behave like parasites, new research shows.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

Circular RNAs: The new frontier in cancer research      (via sciencedaily.com)     Original source 

Unravelling the complexities of circular RNAs (circRNAs) in cancer biology has positioned scientists on the cusp of revolutionary breakthroughs in the diagnosis and treatment of cancer. A new study predicts remarkable potential for circular RNAs to improve cancer treatment and patient outcomes within the next 5-10 years.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

What gave the first molecules their stability?      (via sciencedaily.com)     Original source 

The origins of life remain a major mystery. How were complex molecules able to form and remain intact for prolonged periods without disintegrating? A team has demonstrated a mechanism that could have enabled the first RNA molecules to stabilize in the primordial soup. When two RNA strands combine, their stability and lifespan increase significantly.

Anthropology: Early Humans Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Environmental: General Geoscience: Environmental Issues
Published

Genetic signatures of domestication identified in pigs, chickens      (via sciencedaily.com)     Original source 

Wild boars and red junglefowl gave rise to common pigs and chickens. These animals' genes evolved to express themselves differently, leading to signatures of domestication -- such as weaker bones and better viral resistance -- in pigs and chickens, according to a research team.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Physics: General Physics: Optics
Published

Precise package delivery in cells?      (via sciencedaily.com)     Original source 

Researchers have developed new real-time microscopy technology and successfully observed the behavior of 'motor proteins', which may hold the key to unraveling the efficient material transport strategy of cells.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

When it comes to DNA replication, humans and baker's yeast are more alike than different      (via sciencedaily.com)     Original source 

Humans and baker's yeast have more in common than meets the eye, including an important mechanism that helps ensure DNA is copied correctly, reports a pair of studies. The findings visualize for the first time a molecular complex -- called CTF18-RFC in humans and Ctf18-RFC in yeast -- that loads a 'clamp' onto DNA to keep parts of the replication machinery from falling off the DNA strand.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Which strains of tuberculosis are the most infectious?      (via sciencedaily.com)     Original source 

Highly localized TB strains are less infectious in cosmopolitan cities and more likely to infect people from the geographic area that is the strain's natural habitat. The research provides the first controlled evidence that TB strains may evolve with their human hosts, adapting to be more infectious to specific populations. The findings offer new clues for tailoring preventive treatments after exposure to TB based on affinity between strains host populations.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

Novel nanosensing technique for quality control of viral vectors in gene therapy      (via sciencedaily.com)     Original source 

Researchers develop a nanosensing platform that can assess the quality of individual viral vector particles Viral vectors hold much potential for gene editing and gene therapy, but there is a pressing need to develop quality control methods to minimize potential side effects on patients. Addressing this, researchers from Japan developed a nanosensing-based approach that can differentiate between functional and faulty viral vectors at the single-particle level. This convenient and inexpensive technique will hopefully get us one step closer to advancing treatments for genetic disorders.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Geoscience: Geochemistry
Published

Breakthrough in plant disease: New enzyme could lead to anti-bacterial pesticides      (via sciencedaily.com)     Original source 

Scientists uncover a pivotal enzyme, XccOpgD, and its critical role in synthesizing C G16, a key compound used by Xanthomonas pathogens to enhance their virulence against plants. This breakthrough opens new avenues for developing targeted pesticides that combat plant diseases without harming beneficial organisms. Insights into XccOpgD's enzymatic mechanism and optimal conditions offer promising prospects for sustainable agriculture, bolstering crop resilience and global food security while minimizing environmental impact.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology
Published

Cheese of the future: Consumers open to animal-free alternatives      (via sciencedaily.com)     Original source 

Companies and institutes are currently working on biotechnological processes for the production of 'dairy products' without the use of cows: In so-called precision fermentation, egg and milk proteins are produced with the help of bacteria, yeasts or other fungi. This results in foods such as milk or cheese with a familiar flavor and texture. Supporters hope that this will lead to more sustainable food production, as nutrient-rich proteins can be produced using fewer resources. But will consumers accept such products?

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Talking about regeneration      (via sciencedaily.com)     Original source 

Researchers transferred genes from simple organisms capable of regenerating their bodies into common fruit flies, more complex animals that cannot. They found the transferred gene suppressed an age-related intestinal issue in the flies. Their results suggest studying genes specific to animals with high regenerative capability may uncover new mechanisms for rejuvenating stem cell function and extending the healthy lifespan of unrelated organisms.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Zoology
Published

Study examines effect of fish oil in older adults' brains      (via sciencedaily.com)     Original source 

A clinical trial suggests that a subset of older adults with a genetic predisposition to Alzheimer's disease may benefit from fish oil supplements.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

The next generation of RNA chips      (via sciencedaily.com)     Original source 

An international research team has succeeded in developing a new version of RNA building blocks with higher chemical reactivity and photosensitivity. This can significantly reduce the production time of RNA chips used in biotechnological and medical research. The chemical synthesis of these chips is now twice as fast and seven times more efficient.

Biology: Cell Biology
Published

Cracking the carb code: Researchers create new glycemic index database to improve dietary awareness      (via sciencedaily.com)     Original source 

Researchers create the first national glycemic index database, revealing how common foods impact health and contribute to chronic diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

AI opens door to safe, effective new antibiotics to combat resistant bacteria      (via sciencedaily.com)     Original source 

In a hopeful sign for demand for more safe, effective antibiotics for humans, researchers have leveraged artificial intelligence to develop a new drug that already is showing promise in animal trials.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New principle for treating tuberculosis      (via sciencedaily.com)     Original source 

Researchers have succeeded in identifying and synthesizing a group of molecules that can act against the cause of tuberculosis in a new way. They describe that the so-called callyaerins act against the infectious disease by employing a fundamentally different mechanism compared to antibiotic agents used to date.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Scientists capture immune cells hidden in nasal passages      (via sciencedaily.com)     Original source 

Scientists uncover 'striking' immune cell populations poised to fight SARS-CoV-2 in upper airway.