Showing 20 articles starting at article 341

< Previous 20 articles        Next 20 articles >

Categories: Biology: Genetics, Chemistry: Inorganic Chemistry

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Clarifying the cellular mechanisms underlying periodontitis with an improved animal model      (via sciencedaily.com)     Original source 

Although periodontitis is an extremely prevalent disorder, it is challenging to conduct detailed and comprehensive analyses of its progression at the cellular level. Recently, researchers developed an improved periodontitis mouse model that simplifies the collection and analysis of multiple periodontal tissue types. Using this model, they clarified the role of an important signaling pathway in the inflammatory response of periodontal tissue, paving the way for better diagnostic and therapeutic strategies for periodontitis.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Powering wearable devices with high-performing carbon nanotube yarns      (via sciencedaily.com)     Original source 

Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Ecology: Animals Ecology: Endangered Species Ecology: Extinction
Published

Genes provide hope for the survival of Arabia's last big cat      (via sciencedaily.com)     Original source 

The release of captive bred animals carefully selected for their genes can make a significant contribution to the successful recovery of the dwindling wild population and avert the prospect of extinction. Despite revealing extremely low levels of genetic diversity in the wild leopard population in Oman, the research team discovered higher levels of genetic diversity in captive leopards across the region. This important genetic resource has the potential for a major role in successful recovery of the Arabian leopard.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

By listening, scientists learn how a protein folds      (via sciencedaily.com)     Original source 

By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Enhancing superconductivity of graphene-calcium superconductors      (via sciencedaily.com)     Original source 

Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues      (via sciencedaily.com)     Original source 

Investigating ways to create high-performance steel, a research team used theoretical calculations on 120 combinations of 12 alloy elements, such as aluminum and titanium, with carbon and nitrogen, while also systematically clarifying the bonding mechanism.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Genetics Biology: Microbiology
Published

New mechanisms behind antibiotic resistance      (via sciencedaily.com)     Original source 

Two newly discovered mechanisms in bacteria have been identified that can contribute to the development of antibiotic resistance. Changing the number of copies of resistance genes in bacteria increases antibiotic resistance, and can do so very quickly. These two mechanisms, along with a third known mechanism, can occur independently of each other, even within the same bacterial cell.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Expanding on the fundamental principles of liquid movement      (via sciencedaily.com)     Original source 

We are living in a world surrounded by liquid and flow, and understanding the principles that govern its movement is vital in our high-tech world. Through mathematical modeling and experimentation, researchers have expanded on Tanner's Law -- a law in fluid dynamics that describes how non-volatile liquids move across surfaces -- to cover a wider range of volatile liquids. These findings have the potential to play a role in various liquid-based industries such as electronics cooling.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Ecology: Nature Environmental: General
Published

Modern plant enzyme partners with surprisingly ancient protein      (via sciencedaily.com)     Original source 

Scientists have discovered that a protein responsible for the synthesis of a key plant material evolved much earlier than suspected. This new research explored the origin and evolution of the biochemical machinery that builds lignin, a structural component of plant cell walls with significant impacts on the clean energy industry.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Sweet taste receptor affects how glucose is handled metabolically by humans      (via sciencedaily.com)     Original source 

The sweet-taste receptor might be the first stop in a metabolic surveillance system for sugar. The receptor is also expressed in certain intestinal cells, where it may facilitate glucose absorption and assimilation, as part of this system. A team found that stimulation and inhibition of the sweet receptor helps regulate glucose metabolism in humans and may have implications for managing such metabolic disorders as diabetes.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

Scientists discover mechanism of sugar signaling in plants      (via sciencedaily.com)     Original source 

A paper describes how the moving parts of a particular plant protein control whether plants can grow and make energy-intensive products such as oil -- or instead put in place a series of steps to conserve precious resources. The study focuses specifically on how the molecular machinery is regulated by a molecule that rises and falls with the level of sugar -- plants' main energy source.

Chemistry: Inorganic Chemistry Energy: Nuclear Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Magnetic imprint on deconfined nuclear matter      (via sciencedaily.com)     Original source 

Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.

Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues
Published

New data-driven model rapidly predicts dehydrogenation barriers in solid-state materials      (via sciencedaily.com)     Original source 

Researchers have developed a groundbreaking data-driven model to predict the dehydrogenation barriers of magnesium hydride, a promising material for solid-state hydrogen storage. This advancement holds significant potential for enhancing hydrogen storage technologies, a crucial component in the transition to sustainable energy solutions.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics
Published

Diamond glitter: A play of colors with artificial DNA crystals      (via sciencedaily.com)     Original source 

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Ecology: Sea Life Environmental: Ecosystems Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Zombie cells in the sea: Viruses keep the most common marine bacteria in check      (via sciencedaily.com)     Original source 

Marine microbes control the flux of matter and energy essential for life in the oceans. Among them, the bacterial group SAR11 accounts for about a third of all the bacteria found in surface ocean waters. A study now reveals that at times nearly 20% of SAR11 cells are infected by viruses, significantly reducing total cell numbers. The viruses can also transform these once thriving bacteria into zombies, a phenomenon observed for the first time and widespread in the oceans.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Plants restrict use of 'Tipp-Ex proteins'      (via sciencedaily.com)     Original source 

Plants have special corrective molecules at their disposal that can make retrospective modifications to copies of genes. However, it would appear that these 'Tipp-Ex proteins' do not have permission to work in all areas of the cell, only being used in chloroplasts and mitochondria. A study has now explained why this is the case. It suggests that the correction mechanism would otherwise modify copies that have nothing wrong with them, with fatal consequences for the cell.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Fruit fly wing research offers window into birth defects      (via sciencedaily.com)     Original source 

If fruit fly wings do not develop into the right shape, the flies will die. Researchers have learned how fly embryo cells develop as they need to, opening a window into human development and possible treatments for birth defects.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Environmental: General
Published

A new 'rule of biology' may have come to light, expanding insight into evolution and aging      (via sciencedaily.com)     Original source 

A molecular biologist may have found a new 'rule of biology.' The rule challenges long-held notions that most living organisms prefer stability over instability because stability requires less energy and fewer resources.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

New sensor gives unprecedented look at changes in cell's energy 'currency'      (via sciencedaily.com)     Original source 

A new sensor is giving researchers the best look yet at ATP levels inside living cells, enabling scientists to study in greater detail than ever before how fluctuations in this cellular currency affect the cell and contribute to disease.