Showing 20 articles starting at article 81

< Previous 20 articles        Next 20 articles >

Categories: Biology: Genetics, Chemistry: Inorganic Chemistry

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: General Biology: Genetics Environmental: Ecosystems
Published

Mix of factors prompts owl monkeys to leave their parents      (via sciencedaily.com)     Original source 

There comes a point in the lives of young owl monkeys when they leave their parents and strike out on their own to find a mate. In a new study of a wild population of Azara's owl monkeys in northern Argentina, researchers reveal that a combination of social and ecological factors influences when these tree-dwelling monkeys peel away from their parents and siblings. According to their findings -- which were based on 25 years of genetic and demographic data for several generations of owl monkeys, covering more than 330 individuals -- none of the individuals, regardless of their sex, reproduced in the same group where they were born. In all cases, the researchers found, the animals either departed from their natal group or died before reproducing.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Viral defense protein speeds up female stem cell production      (via sciencedaily.com)     Original source 

A viral defense mechanism can be used to accelerate the creation of female stem cell lines in mice. The findings can boost efforts in medical research, drug testing, and regenerative therapies, particularly for women and individuals with two X chromosomes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Forever chemical pollution can now be tracked      (via sciencedaily.com)     Original source 

Researchers developed a way to fingerprint organofluorine compounds -- sometimes called 'forever chemicals' --which could help authorities trace them to their source when they end up in aquifers, waterways or soil.

Biology: Cell Biology Biology: Genetics Environmental: General Geoscience: Environmental Issues
Published

Pesticide contamination is more than apple skin deep      (via sciencedaily.com)     Original source 

Pesticides and herbicides are critical to ensuring food security worldwide, but these substances can present a safety risk to people who unwittingly ingest them. Protecting human health, therefore, demands sensitive analytical methods to identify even trace levels of potentially harmful substances. Now, researchers have developed a high-tech imaging method to detect pesticide contamination at low levels, and its application on fruits reveals that current food safety practices may be insufficient.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Zoology
Published

Researchers find gene which determines marsupial fur color      (via sciencedaily.com)     Original source 

Fur is a defining characteristic of mammals, coming in a wide variety of colors and patterns -- thanks to a world-first study, we now know which genes make a marsupial's coat black or grey.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Advanced chelators offer efficient and eco-friendly rare earth element recovery      (via sciencedaily.com)     Original source 

The world is going to need a lot of weird metals in the coming years, according to chemistry professor. But he isn't talking about lithium, cobalt or even beryllium. He's interested in dysprosium, which is so hidden in the periodic table that you'd be forgiven for thinking he made it up.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Concept for efficiency-enhanced noble-metal catalysts      (via sciencedaily.com)     Original source 

The production of more than 90 percent of all chemical products we use in our everyday lives relies on catalysts. Catalysts speed up chemical reactions, can reduce the energy required for these processes, and in some cases, reactions would not be possible at all without catalysts. Researchers developed a concept that increases the stability of noble-metal catalysts and requires less noble metal for their production.

Biology: Biochemistry Biology: Cell Biology Biology: Genetics
Published

Horse miscarriages offer clues to causes of early human pregnancy loss      (via sciencedaily.com)     Original source 

A study of horses -- which share many important similarities with humans in their chromosomes and pregnancies -- revealed that 42% of miscarriages and spontaneous abortions in the first two months of pregnancy were due to complications from an extra set of chromosomes, a condition called triploidy.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Genetics Biology: Microbiology
Published

Study analyzes potato-pathogen 'arms race' after Irish famine      (via sciencedaily.com)     Original source 

Researchers reveal more about the tit-for-tat evolutionary changes occurring in both potato plants and the pathogen that caused the 1840s Irish potato famine.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Mathematics: Modeling
Published

Cracking the code of life: new AI model learns DNA's hidden language      (via sciencedaily.com)     Original source 

With GROVER, a new large language model trained on human DNA, researchers could now attempt to decode the complex information hidden in our genome. GROVER treats human DNA as a text, learning its rules and context to draw functional information about the DNA sequences.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Discovery of a new population of macrophages promoting lung repair after viral infections      (via sciencedaily.com)     Original source 

Researchers have discovered a new population of macrophages, important innate immune cells that populate the lungs after injury caused by respiratory viruses. These macrophages are instrumental in repairing the pulmonary alveoli. This groundbreaking discovery promises to revolutionize our understanding of the post-infectious immune response and opens the door to new regenerative therapies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Coinfecting viruses impede each other's ability to enter cells      (via sciencedaily.com)     Original source 

The process by which phages -- viruses that infect and replicate within bacteria -- enter cells has been studied for over 50 years. In a new study, researchers have used cutting-edge techniques to look at this process at the level of a single cell.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology
Published

Circular RNAs: The new frontier in cancer research      (via sciencedaily.com)     Original source 

Unravelling the complexities of circular RNAs (circRNAs) in cancer biology has positioned scientists on the cusp of revolutionary breakthroughs in the diagnosis and treatment of cancer. A new study predicts remarkable potential for circular RNAs to improve cancer treatment and patient outcomes within the next 5-10 years.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

What gave the first molecules their stability?      (via sciencedaily.com)     Original source 

The origins of life remain a major mystery. How were complex molecules able to form and remain intact for prolonged periods without disintegrating? A team has demonstrated a mechanism that could have enabled the first RNA molecules to stabilize in the primordial soup. When two RNA strands combine, their stability and lifespan increase significantly.

Anthropology: Early Humans Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Environmental: General Geoscience: Environmental Issues
Published

Genetic signatures of domestication identified in pigs, chickens      (via sciencedaily.com)     Original source 

Wild boars and red junglefowl gave rise to common pigs and chickens. These animals' genes evolved to express themselves differently, leading to signatures of domestication -- such as weaker bones and better viral resistance -- in pigs and chickens, according to a research team.

Chemistry: Inorganic Chemistry Energy: Technology
Published

Solving the doping problem: Enhancing performance in organic semiconductors      (via sciencedaily.com)     Original source 

Physicists have discovered two new ways to improve organic semiconductors. They found a way to remove more electrons from the material than previously possible and used unexpected properties in an environment known as the non-equilibrium state, boosting its performance for use in electronic devices.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

When it comes to DNA replication, humans and baker's yeast are more alike than different      (via sciencedaily.com)     Original source 

Humans and baker's yeast have more in common than meets the eye, including an important mechanism that helps ensure DNA is copied correctly, reports a pair of studies. The findings visualize for the first time a molecular complex -- called CTF18-RFC in humans and Ctf18-RFC in yeast -- that loads a 'clamp' onto DNA to keep parts of the replication machinery from falling off the DNA strand.