Showing 20 articles starting at article 421

< Previous 20 articles        Next 20 articles >

Categories: Biology: Genetics, Chemistry: Organic Chemistry

Return to the site home page

Biology: Biochemistry Biology: Cell Biology Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Bringing multidrug-resistant pathogens to their knees      (via sciencedaily.com)     Original source 

Multidrug-resistant bacterial infections that cannot be treated by any known antibiotics pose a serious global threat. A research team has now introduced a method for the development of novel antibiotics to fight resistant pathogens. The drugs are based on protein building blocks with fluorous lipid chains.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: Encryption Computer Science: General Physics: General
Published

Protecting art and passwords with biochemistry      (via sciencedaily.com)     Original source 

A new molecular test method helps to prove the authenticity of works of art. The new method could also help to make passwords secure against quantum computers.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Ecology: Trees Environmental: General Geoscience: Geochemistry
Published

Integrated dataset enables genes-to-ecosystems research      (via sciencedaily.com)     Original source 

A new dataset bridging molecular information about the poplar tree microbiome to ecosystem-level processes has been released. The project aims to inform research regarding how natural systems function, their vulnerability to a changing climate, and ultimately how plants might be engineered for better performance as sources of bioenergy and natural carbon storage.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

A simple, inexpensive way to make carbon atoms bind together      (via sciencedaily.com)     Original source 

The active ingredient in many drugs is what's known as a small molecule: bigger than water, much smaller than an antibody and mainly made of carbon. It's tough, however, to make these molecules if they require a quaternary carbon -- a carbon atom bonded to four other carbon atoms. But now, scientists have uncovered a potential cost-effective way to produce these tricky motifs.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Mathematics: Modeling
Published

Can language models read the genome? This one decoded mRNA to make better vaccines      (via sciencedaily.com)     Original source 

Researchers developed a foundational language model to decode mRNA sequences and optimize those sequences for vaccine development. The tool shows broader promise as a means for studying molecular biology.

Biology: Biochemistry Biology: General Biology: Genetics Ecology: Animals Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Ecology: Nature
Published

Rusty-patched bumblebee's struggle for survival found in its genes      (via sciencedaily.com)     Original source 

The rusty-patched bumblebee, once common in the United States, has declined from about 90% of its former range. Researchers conducted the first range-wide genetic study of the endangered species to inform recovery efforts.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Heat flows the secret to order in prebiotic molecular kitchen      (via sciencedaily.com)     Original source 

Biophysicists have demonstrated how heat flows through rock fissures could have created the conditions for the emergence of life.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New tools reveal how genes work and cells organize      (via sciencedaily.com)     Original source 

Researchers have discovered how certain proteins can attach to special structures in RNA, called G-quadruplexes. Additionally, they have developed computational tools capable of predicting these protein-RNA interactions. The newfound ability to predict these interactions can help future work in understanding molecular pathways in the cell and pave the way for developing drugs targeting these RNA G-quadruplex binding proteins, that are found to be involved in disease such as cancer.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Genetics Ecology: Nature Ecology: Trees
Published

New sunflower family tree reveals multiple origins of flower symmetry      (via sciencedaily.com)     Original source 

A new sunflower family tree used skimmed genomes to increase the number of species sampled, revealing that flower symmetry evolved multiple times independently, a process called convergent evolution, among the members of this large plant family.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New discovery unravels malaria invasion mechanism      (via sciencedaily.com)     Original source 

A recent breakthrough sheds light on how the malaria parasite, Plasmodium falciparum, invades human red blood cells. The study reveals the role of a sugar called sialic acid in this invasion process. The findings have major implications for malaria vaccine and drug development.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular
Published

First view of centromere variation and evolution      (via sciencedaily.com)     Original source 

A genomic study of human and selected nonhuman primate centromeres has revealed their unimaginable diversity and speed of evolutionary change. Although centromeres are vital to proper cell replication by assuring faithful transmision of genetic materials when cells divide, the complexity of their genomic organization had been almost impossible to study. The lack of centromere sequences hindered exploration of how these regions help maintain genetic integrity. Now, advanced technologies have shown scientists how greatly centromeres differ in size and structure.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Engineers 'symphonize' cleaner ammonia production      (via sciencedaily.com)     Original source 

Among the many chemicals we use every day, ammonia is one of the worst for the atmosphere. The nitrogen-based chemical used in fertilizer, dyes, explosives and many other products ranks second only to cement in terms of carbon emissions, due to the high temperatures and energy needed to manufacture it. But by improving on a well-known electrochemical reaction and orchestrating a 'symphony' of lithium, nitrogen and hydrogen atoms, engineers have developed a new ammonia production process that meets several green targets.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology
Published

When inequality is more than 'skin-deep': Social status leaves traces in the epigenome of spotted hyenas in Tanzania      (via sciencedaily.com)     Original source 

A research consortium provides evidence that social behavior and social status are reflected at the molecular level of gene activation (epigenome) in juvenile and adult free-ranging spotted hyenas. They analyzed non-invasively collected gut epithelium samples from both high-ranking and low-ranking female hyenas and showed that rank differences were associated with epigenetic signatures of social inequality, i.e., the pattern of activation or switching off of genes that regulate important physiological processes such as energy conversion and immune response in several genome regions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How the Crimean-Congo hemorrhagic fever virus enters our cells      (via sciencedaily.com)     Original source 

Researchers have identified how the tick-borne Crimean-Congo haemorrhagic fever virus enters our cells. The results are an important step in the development of drugs against the deadly disease.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Researchers discover key gene for toxic alkaloid in barley      (via sciencedaily.com)     Original source 

Barley is one of the most important cereal crops on a global scale. Many barley cultivars produce a toxic alkaloid called gramine that affects the suitability of barley as fodder, but also helps to protect barley from pathogens. So far, the potential of manipulating gramine levels has not been harnessed for plant breeding, because the genetic basis of gramine production has been unresolved. Research groups now disclose the complete biosynthetic pathway of gramine and demonstrate how gramine biosynthesis can be introduced into model organisms or removed from barley.