Showing 20 articles starting at article 681
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Chemistry: Organic Chemistry
Published The surprisingly resourceful ways bacteria thrive in the human gut



New research shows that some groups of bacteria in the gut are amazingly resourceful, with a large repertoire of genes that help them generate energy for themselves and potentially influence human health as well.
Published Nematode proteins shed light on infertility



Biologists developed a method for illuminating the intricate interactions of the synaptonemal complex in the nematode C. elegans. The authors identified a trio of protein segments that guide chromosomal interactions, and pinpointed the location where they interact with each other. Their novel method uses a technique known as genetic suppressor screening, which can serve as a blueprint for research on large cellular assemblies that resist traditional structural analysis.
Published Study reveals clues to how Eastern equine encephalitis virus invades brain cells



Researchers have determined how Eastern equine encephalitis virus attaches to a receptor it uses to enter and infect cells. The findings laid the groundwork for a receptor decoy molecule that protects mice from encephalitis caused by the virus.
Published Bacteria load their syringes



Many bacterial pathogens use small injection apparatuses to manipulate the cells of their hosts, such as humans, so that they can spread throughout the body. To do this, they need to fill their syringes with the relevant injection agent. A technique that tracks the individual movement of proteins revealed how bacteria accomplish this challenging task.
Published New reasons eating less fat should be one of your resolutions



A new study to motivate your New Year's resolutions: it demonstrates that high-fat diets negatively impact genes linked not only to obesity, colon cancer and irritable bowels, but also to the immune system and brain function.
Published Using electricity, scientists find promising new method of boosting chemical reactions



Chemists found a way to use electricity to boost a type of chemical reaction often used in synthesizing new candidates for pharmaceutical drugs. The research is an advance in the field of electrochemistry and shows a path forward to designing and controlling reactions -- and making them more sustainable.
Published New method illuminates druggable sites on proteins



Scientists develop a new, high-resolution technique for finding potential therapeutic targets on proteins in living cells. The findings could lead to more targeted therapeutics for nearly any human disease.
Published Elusive cytonemes guide neural development, provide signaling 'express route'



Discover the first images of cytonemes during mammalian neural development, serving as express routes to establish morphogen gradients and tissue patterning.
Published Aptamers: lifesavers; ion shields: aptamer guardians



Aptamers, nucleic acids capable of selectively binding to viruses, proteins, ions, small molecules, and various other targets, are garnering attention in drug development as potential antibody substitutes for their thermal and chemical stability as well as ability to inhibit specific enzymes or target proteins through three-dimensional binding. They also hold promise for swift diagnoses of colon cancer and other challenging diseases by targeting elusive biomarkers. Despite their utility, these aptamers are susceptible to easy degradation by multiple enzymes, presenting a significant challenge.
Published Breakthrough in organic semiconductor synthesis paves the way for advanced electronic devices



A research team has achieved a significant breakthrough in the field of organic semiconductors. Their successful synthesis and characterization of a novel molecule called 'BNBN anthracene' has opened up new possibilities for the development of advanced electronic devices.
Published Molecules exhibit non-reciprocal interactions without external forces



Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.
Published New material allows for better hydrogen-based batteries and fuel cells



Researchers have developed a solid electrolyte for transporting hydride ions at room temperature. This breakthrough means that the full advantages of hydrogen-based solid-state batteries and fuel cells can be had without the need for constant hydration. This will reduce their complexity and cost, which is essential for advancing towards a practical hydrogen-based energy economy.
Published Big impacts from small changes in cell



Tiny things matter -- for instance, one amino acid can completely alter the architecture of the cell. Researchers have now investigated the structure and mechanics of the main component of the cytoskeleton of the cell: a protein known as actin. Actin is found in all living cells where it has a range of important functions -- from muscle contraction to cell signalling and cell shape. This protein comes in two different varieties termed 'isoforms', which are known as gamma actin and beta actin.
Published How jellyfish regenerate functional tentacles in days



At about the size of a pinkie nail, the jellyfish species Cladonema can regenerate an amputated tentacle in two to three days -- but how? Regenerating functional tissue across species, including salamanders and insects, relies on the ability to form a blastema, a clump of undifferentiated cells that can repair damage and grow into the missing appendage. Jellyfish, along with other cnidarians such as corals and sea anemones, exhibit high regeneration abilities, but how they form the critical blastema has remained a mystery until now.
Published Researchers map how measles virus spreads in human brain



Researchers mapped how the measles virus mutated and spread in the brain of a person who succumbed to a rare, lethal brain disease. New cases of this disease, which is a complication of the measles virus, may occur as measles reemerges among the unvaccinated, say researchers.
Published GPCR structure: Research reveals molecular origins of function for a key drug target



Scientists reveal how G protein-coupled receptors, major therapeutic drug targets, decode critical properties of their ligands.
Published Location, location, location: The hidden power of intracellular neighborhoods



New findings provide details about the hidden organization of the cytoplasm, showing it makes a big difference where in that cellular broth that messenger RNA (mRNA) get translated into proteins. The findings hold promise for increasing or altering the production of proteins in mRNA vaccines and therapies.
Published The future of canine stem cell therapy: unprecedented, painless, and feeder-free



Scientists have developed an efficient, non-invasive, and pain-free method to generate canine-induced pluripotent stem cells (iPSCs). They identified six reprogramming genes that can boost canine iPSC generation by 120 times compared to conventional methods using fibroblasts. The iPSCs were created from urine-derived cells without the need for feeder cells, an impossible feat until now. Their findings are expected to advance regenerative medicine and genetic disease research in veterinary medicine.
Published The key mechanism to cell growth has been elucidated



Researchers have discovered how amino acids activate a key cell, TORC1, which is a master regulator in living organisms that controls whether cells grow or recycle their contents in yeast. Notably, the team found that the amino acid cysteine is sensed by a protein called Pib2 and that the two bind together to trigger TORC1. This is important because faulty TORC1 has been linked to disease such as cancer.
Published Bugs that help bugs: How environmental microbes boost fruit fly reproduction



A research group found that in female fruit flies, microorganisms enhance reproductive function, boosting the number of cells that form eggs and the number of mature eggs. This is done by controlling the release of hormones to speed up cell division in the ovaries, and limiting programmed cell death. These findings could improve reproductive medicine and could aid the development of new methods to enhance fertility.