Showing 20 articles starting at article 361

< Previous 20 articles        Next 20 articles >

Categories: Biology: Genetics, Physics: Quantum Physics

Return to the site home page

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Condensed matter physics: Novel one-dimensional superconductor      (via sciencedaily.com)     Original source 

In a significant development in the field of superconductivity, researchers have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Lead-vacancy centers in diamond as building blocks for large-scale quantum networks      (via sciencedaily.com)     Original source 

A lead-vacancy (PbV) center in diamond has been developed as a quantum emitter for large-scale quantum networks by researchers. This innovative color center exhibits a sharp zero-phonon-line and emits photons with specific frequencies. The PbV color center stands out among other diamond color centers due to its ability to maintain optical properties at relatively high temperatures of 16 K. This makes it well-suited for transferring quantum information in large-scale quantum networks.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Researchers create artificial cells that act like living cells      (via sciencedaily.com)     Original source 

Researchers describe the steps they took to manipulate DNA and proteins -- essential building blocks of life -- to create cells that look and act like cells from the body. This accomplishment, a first in the field, has implications for efforts in regenerative medicine, drug delivery systems and diagnostic tools.

Computer Science: Quantum Computers Energy: Technology Mathematics: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Manipulating the geometry of 'electron universe' in magnets      (via sciencedaily.com)     Original source 

Researchers have discovered a unique property, the quantum metric, within magnetic materials, altering the 'electron universe' geometry. This distinct electric signal challenges traditional electrical conduction and could revolutionize spintronic devices.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Perfecting the view on a crystal's imperfection      (via sciencedaily.com)     Original source 

Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Liquid droplets shape how cells respond to change      (via sciencedaily.com)     Original source 

New research has shown that cells regulate cAMP/PKA signaling by forming liquid droplets that segregate excess PKA catalytic subunits where they can do no harm. Some cancers may block the formation of liquid droplets, leading to hyperactive signaling and tumor formation.

Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

AI can improve Alzheimer's treatment through the 'gut-brain axis'      (via sciencedaily.com)     Original source 

Researchers are using artificial intelligence to uncover the link between the gut microbiome and Alzheimer's disease. Previous studies showed that Alzheimer's disease patients have changes in their gut bacteria as the disease develops. The study outlines a computational method to determine how bacterial byproducts called metabolites interact with receptors on cells and contribute to Alzheimer's disease.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists discover the cellular functions of a family of proteins integral to inflammatory diseases      (via sciencedaily.com)     Original source 

In a scientific breakthrough, researchers have revealed the biological mechanisms by which a family of proteins known as histone deacetylases (HDACs) activate immune system cells linked to inflammatory bowel disease (IBD) and other inflammatory diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Protein network dynamics during cell division      (via sciencedaily.com)     Original source 

An international team has mapped the movement of proteins encoded by the yeast genome throughout its cell cycle. This is the first time that all the proteins of an organism have been tracked across the cell cycle, which required a combination of deep learning and high-throughput microscopy.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

The enemy within: How pathogens spread unrecognized in the body      (via sciencedaily.com)     Original source 

Some pathogens hide inside human cells to enhance their survival. Researchers have uncovered a unique tactic certain bacteria use to spread in the body without being detected by the immune system. In their study, they reveal the crucial role of a bacterial nanomachine in this infection process.

Energy: Nuclear Physics: General Physics: Quantum Physics
Published

New beta-decay measurements in mirror nuclei pin down the weak nuclear force      (via sciencedaily.com)     Original source 

Scientists have gained insights into the weak nuclear force from new, more sensitive studies of the beta decays of the 'mirror' nuclei lithium-8 and boron-8. The weak nuclear force drives the process of nuclear beta decay. The research found that the properties of the beta decays of lithium-8 and boron-8 are in perfect agreement with the predictions of the Standard Model.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Compact quantum light processing      (via sciencedaily.com)     Original source 

An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

Key protein regulates immune response to viruses in mammal cells      (via sciencedaily.com)     Original source 

Researchers have revealed the regulatory mechanism of a specific protein, TRBP, that plays a key role in balancing the immune response triggered by viral infections in mammal cells. These findings could help drive the development of antiviral therapies and nucleic acid medicines to treat genetic disorders.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Light show in living cells      (via sciencedaily.com)     Original source 

Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Zoology Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Marine microbial populations: Potential sensors of the global change in the ocean      (via sciencedaily.com)     Original source 

Animal and plant populations have been extensively studied, which has helped to understand ecosystem processes and evolutionary adaptations. However, this has not been the case with microbial populations due to the impossibility of isolating, culturing and analyzing the genetic content of the different species and their individuals in the laboratory. Therefore, although it is known that populations of microorganisms include a great diversity, this remains largely uncharacterized.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Environmental: General
Published

RNA's hidden potential: New study unveils its role in early life and future bioengineering      (via sciencedaily.com)     Original source 

The origin of life continues to remain a matter of debate. The ribonucleic acid (RNA) world hypothesis proposes that 'ribozymes' which store genetic information and possess catalytic functions may have supported the activities of early life forms. Now, researchers explore how RNA elongation is regulated allosterically, shedding light on its impact on early life processes and offering insights into the fabrication of arbitrary RNA nanostructures with various modern applications.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics
Published

Calorie restriction study reveals complexities in how diet impacts aging      (via sciencedaily.com)     Original source 

The rate at which human cells age is influenced by multiple interconnected factors. New research examined how restricting calories influences telomere length and biological aging.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Solving a mini mystery of cell division      (via sciencedaily.com)     Original source 

Trying to hit a target size before dividing seems like the best strategy for maintaining a precise cell size, but bacteria don't do that. Now we know why.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Plant sensors could act as an early warning system for farmers      (via sciencedaily.com)     Original source 

Using a pair of sensors made from carbon nanotubes, researchers discovered signals that help plants respond to stresses such as heat, light, or attack from insects or bacteria. Farmers could use these sensors to monitor threats to their crops, allowing them to intervene before the crops are lost.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Tracking a protein's fleeting shape changes      (via sciencedaily.com)     Original source 

Researchers have developed a powerful, new technique to generate 'movies' of changing protein structures and speeds of up to 50 frames per second.