Showing 20 articles starting at article 441

< Previous 20 articles        Next 20 articles >

Categories: Biology: Genetics, Physics: Quantum Physics

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

Discovery of amino acid unveils how light makes plants open      (via sciencedaily.com)     Original source 

Scientists have uncovered a unique mechanism that regulates the opening of stomata in plants. Phosphorylation of the amino acid Thr881 on the plasma membrane proton pump plays a key role in this process. The study paves the way for the targeted manipulation of plant physiology, with potential applications in agriculture and environmental sustainability.

Geoscience: Earth Science Offbeat: Earth and Climate Offbeat: General Offbeat: Space Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

Scientists on the hunt for evidence of quantum gravity's existence at the South Pole      (via sciencedaily.com)     Original source 

An Antarctic large-scale experiment is striving to find out if gravity also exists at the quantum level. An extraordinary particle able to travel undisturbed through space seems to hold the answer.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists deliver quantum algorithm to develop new materials and chemistry      (via sciencedaily.com)     Original source 

Scientists published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent article, expected to become a powerful tool to investigate the physical properties in electronic systems.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The world is one step closer to secure quantum communication on a global scale      (via sciencedaily.com)     Original source 

Researchers have brought together two Nobel prize-winning research concepts to advance the field of quantum communication. Scientists can now efficiently produce nearly perfect entangled photon pairs from quantum dot sources.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum interference could lead to smaller, faster, and more energy-efficient transistors      (via sciencedaily.com)     Original source 

Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Natural recycling at the origin of life      (via sciencedaily.com)     Original source 

How was complex life able to develop on the inhospitable early Earth? At the beginning there must have been ribonucleic acid (RNA) to carry the first genetic information. To build up complexity in their sequences, these biomolecules need to release water. On the early Earth, which was largely covered in seawater, that was not so easy to do.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

As we age, our cells are less likely to express longer genes      (via sciencedaily.com)     Original source 

Aging may be less about specific 'aging genes' and more about how long a gene is. Many of the changes associated with aging could be occurring due to decreased expression of long genes, say researchers. A decline in the expression of long genes with age has been observed in a wide range of animals, from worms to humans, in various human cell and tissue types, and also in individuals with neurodegenerative disease. Mouse experiments show that the phenomenon can be mitigated via known anti-aging factors, including dietary restriction.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Maize genes control little helpers in the soil      (via sciencedaily.com)     Original source 

Tiny organisms such as bacteria and fungi help to promote the health and function of plant roots. It is commonly assumed that the composition of these microbes is dependent on the properties of the soil. However, researchers have now discovered when studying different local varieties of maize that the genetic makeup of the plants also helps to influence which microorganisms cluster around the roots.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Decoding the plant world's complex biochemical communication networks      (via sciencedaily.com)     Original source 

A research team has begun translating the complex molecular language of petunias. Their grammar and vocabulary are well hidden, however, within the countless proteins and other compounds that fill floral cells. Being rooted to the ground, plants can't run away from insects, pathogens or other threats to their survival. But plant scientists have long known that they do send warnings to each other via scent chemicals called volatile organic compounds.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Cleaning up environmental contaminants with quantum dot technology      (via sciencedaily.com)     Original source 

The 2023 Nobel Prize in Chemistry was focused on quantum dots -- objects so tiny, they're controlled by the strange rules of quantum physics. Quantum dots used in electronics are often toxic, but their nontoxic counterparts are being explored for uses in medicine and in the environment, including water decontamination. One team of researchers has specially designed carbon- and sulfur-based dots for these environmental applications.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Marine Biology: Zoology Ecology: Endangered Species Ecology: Nature Ecology: Research Ecology: Sea Life
Published

Scientists weigh up current status of blue whale populations around the world      (via sciencedaily.com)     Original source 

The largest living animal, the blue whale (Balaenoptera musculus) which averages about 27 meters in length, has slowly recovered from whaling only to face the rising challenges of global warming, pollution, disrupted food sources, shipping, and other human threats. In a major new study, biologists have taken a stock of the number, distribution and genetic characteristics of blue whale populations around the world and found the greatest differences among the eastern Pacific, Antarctic subspecies and pygmy subspecies of the eastern Indian and western Pacific.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum talk with magnetic disks      (via sciencedaily.com)     Original source 

Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology. Addressing this need, a research team is now introducing a new approach for transducing quantum information: the team has manipulated quantum bits, so called qubits, by harnessing the magnetic field of magnons -- wave-like excitations in a magnetic material -- that occur within microscopic magnetic disks.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Ecology: Invasive Species
Published

Decoding the Easter Bunny -- an eastern Finnish brown hare to represent the standard for the species' genome      (via sciencedaily.com)     Original source 

Biologists have published a chromosomally assembled reference genome for the European brown hare. The genome consists of 2.9 billion base pairs, which form 23 autosomal chromosomes, and X and Y sex chromosomes. The timing of the genome release is very appropriate as the brown hare also represents the original Easter Bunny familiar from European folklore.

Anthropology: General Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Genetics Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Across oceans and millennia: decoding the origin and history of the bottle gourd      (via sciencedaily.com)     Original source 

Researchers have uncovered intriguing details about the origins and spread of the bottle gourd, one of the oldest domesticated crops. Their work unveils the genetic diversification and population history of this hard-shelled plant that was used to make bottles, instruments, and containers for over 10,000 years by ancient civilizations.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Chemistry: Biochemistry
Published

Empty 'backpacks' activate the immune system against cancer      (via sciencedaily.com)     Original source 

Researchers have discovered that the mere act of attaching their microparticle 'backpacks' to neutrophils is enough to activate them against cancer -- no drugs needed. In experiments, backpack-bearing neutrophils shrank tumors and extended the survival of mice with cancer, and treated animals retained an immune memory of the disease. This approach opens the door to a new class of drug-free immunotherapy for cancer.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A protein found in human sweat may protect against Lyme disease      (via sciencedaily.com)     Original source 

Human sweat contains a protein that may protect against Lyme disease. About one-third of the population carries a genetic variant of this protein that is associated with Lyme disease in genome-wide association studies.

Chemistry: General Chemistry: Organic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Spectroscopy and theory shed light on excitons in semiconductors      (via sciencedaily.com)     Original source 

Researchers have made very fast and very precise images of excitons -- in fact, accurate to one quadrillionth of a second and one billionth of a meter. This understanding is essential for developing more efficient materials with organic semiconductors.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Animals Geoscience: Geochemistry
Published

Genes identified that allow bacteria to thrive despite toxic heavy metal in soil      (via sciencedaily.com)     Original source 

Some soil bacteria can acquire sets of genes that enable them to pump the heavy metal nickel out of their systems, a study has found. This enables the bacteria to not only thrive in otherwise toxic soils but help plants grow there as well. A research team pinpointed a set of genes in wild soil bacteria that allows them to do this in serpentine soils which have naturally high concentrations of toxic nickel. The genetic discovery could help inform future bioremediation efforts that seek to return plants to polluted soils.