Showing 20 articles starting at article 281

< Previous 20 articles        Next 20 articles >

Categories: Biology: Genetics, Computer Science: Encryption

Return to the site home page

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

The enemy within: How pathogens spread unrecognized in the body      (via sciencedaily.com)     Original source 

Some pathogens hide inside human cells to enhance their survival. Researchers have uncovered a unique tactic certain bacteria use to spread in the body without being detected by the immune system. In their study, they reveal the crucial role of a bacterial nanomachine in this infection process.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology
Published

Key protein regulates immune response to viruses in mammal cells      (via sciencedaily.com)     Original source 

Researchers have revealed the regulatory mechanism of a specific protein, TRBP, that plays a key role in balancing the immune response triggered by viral infections in mammal cells. These findings could help drive the development of antiviral therapies and nucleic acid medicines to treat genetic disorders.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Light show in living cells      (via sciencedaily.com)     Original source 

Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Zoology Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Marine microbial populations: Potential sensors of the global change in the ocean      (via sciencedaily.com)     Original source 

Animal and plant populations have been extensively studied, which has helped to understand ecosystem processes and evolutionary adaptations. However, this has not been the case with microbial populations due to the impossibility of isolating, culturing and analyzing the genetic content of the different species and their individuals in the laboratory. Therefore, although it is known that populations of microorganisms include a great diversity, this remains largely uncharacterized.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Environmental: General
Published

RNA's hidden potential: New study unveils its role in early life and future bioengineering      (via sciencedaily.com)     Original source 

The origin of life continues to remain a matter of debate. The ribonucleic acid (RNA) world hypothesis proposes that 'ribozymes' which store genetic information and possess catalytic functions may have supported the activities of early life forms. Now, researchers explore how RNA elongation is regulated allosterically, shedding light on its impact on early life processes and offering insights into the fabrication of arbitrary RNA nanostructures with various modern applications.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics
Published

Calorie restriction study reveals complexities in how diet impacts aging      (via sciencedaily.com)     Original source 

The rate at which human cells age is influenced by multiple interconnected factors. New research examined how restricting calories influences telomere length and biological aging.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Solving a mini mystery of cell division      (via sciencedaily.com)     Original source 

Trying to hit a target size before dividing seems like the best strategy for maintaining a precise cell size, but bacteria don't do that. Now we know why.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Endangered Species Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Plant sensors could act as an early warning system for farmers      (via sciencedaily.com)     Original source 

Using a pair of sensors made from carbon nanotubes, researchers discovered signals that help plants respond to stresses such as heat, light, or attack from insects or bacteria. Farmers could use these sensors to monitor threats to their crops, allowing them to intervene before the crops are lost.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Tracking a protein's fleeting shape changes      (via sciencedaily.com)     Original source 

Researchers have developed a powerful, new technique to generate 'movies' of changing protein structures and speeds of up to 50 frames per second.

Biology: Biochemistry Biology: Botany Biology: General Biology: Genetics Ecology: Animals Ecology: Endangered Species Geoscience: Environmental Issues Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Making crops colorful for easier weeding      (via sciencedaily.com)     Original source 

To make weeding easier, scientists suggest bioengineering crops to be colorful or to have differently shaped leaves so that they can be more easily distinguished from their wild and weedy counterparts. This could involve altering the crops' genomes so that they express pigments that are already produced by many plants, for example, anthocyanins, which make blueberries blue, or carotenoids, which make carrots orange. Then, they say, weeding robots could be trained to remove only the weeds using machine learning.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers uncover human DNA repair by nuclear metamorphosis      (via sciencedaily.com)     Original source 

Researchers have discovered a DNA repair mechanism that advances understanding of how human cells stay healthy, and which could lead to new treatments for cancer and premature aging.

Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Genetics Ecology: Invasive Species Ecology: Nature
Published

New butterfly species created 200,000 years ago by two species interbreeding      (via sciencedaily.com)     Original source 

Researchers have shown that an Amazonian butterfly is a hybrid species, formed by two other species breeding together almost 200,000 years ago. Researchers have shown that an Amazonian butterfly is a hybrid species, formed by two other species breeding together almost 200,000 years ago.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species
Published

Twisted pollen tubes induce infertility      (via sciencedaily.com)     Original source 

Plants with multiple sets of chromosomes, known as polyploids, are salt-tolerant or drought-resistant and often achieve higher yields. However, newly formed polyploid plants are often sterile or have reduced fertility and are unsuitable for breeding resistant lines. The reason is that the pollen tube in these plants grows incorrectly, which keeps fertilization from taking place. Pollen tube growth is mainly controlled by two genes that could be useful in crop breeding.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Sea Life Geoscience: Geochemistry
Published

How blue-green algae manipulate microorganisms      (via sciencedaily.com)     Original source 

A research team discovers previously unknown gene that indirectly promotes photosynthesis Protein regulator NirP1 influences the coordination of the nitrogen and carbohydrate metabolism 'Such protein regulators could in future be deployed in 'green' and 'blue' biotechnology for targeted control of the metabolism,' says geneticist.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Unlocking the 'chain of worms'      (via sciencedaily.com)     Original source 

An international team of scientists has published a single-cell atlas for Pristina leidyi (Pristina), the water nymph worm, a segmented annelid with extraordinary regenerative abilities that has fascinated biologists for more than a century.

Computer Science: Encryption
Published

Clear guidelines needed for synthetic data to ensure transparency, accountability and fairness, study says      (via sciencedaily.com)     Original source 

Clear guidelines should be established for the generation and processing of synthetic data to ensure transparency, accountability and fairness, a new study says.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Starving cells hijack protein transport stations      (via sciencedaily.com)     Original source 

Study details how nutrient-starved cells divert protein transport stations to cellular recycling centers to be broken down, highlighting a novel approach cells use to deal with stressful conditions.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Cell's 'garbage disposal' may have another role: Helping neurons near skin sense the environment      (via sciencedaily.com)     Original source 

The typical job of the proteasome, the garbage disposal of the cell, is to grind down proteins into smaller bits and recycle some of those bits and parts. That's still the case, for the most part, but researchers, studying nerve cells grown in the lab and mice, say that the proteasome's role may go well beyond that.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Animals Ecology: Sea Life Environmental: Ecosystems
Published

How seaweed became multicellular      (via sciencedaily.com)     Original source 

A deep dive into macroalgae genetics has uncovered the genetic underpinnings that enabled macroalgae, or 'seaweed,' to evolve multicellularity. Three lineages of macroalgae developed multicellularity independently and during very different time periods by acquiring genes that enable cell adhesion, extracellular matrix formation, and cell differentiation, researchers report. Surprisingly, many of these multicellular-enabling genes had viral origins. The study, which increased the total number of sequenced macroalgal genomes from 14 to 124, is the first to investigate macroalgal evolution through the lens of genomics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Innovative antiviral defense with new CRISPR tool      (via sciencedaily.com)     Original source 

The rise of RNA viruses like SARS-CoV-2 highlights the need for new ways to fight them. RNA-targeting tools like CRISPR/Cas13 are powerful but inefficient in the cytoplasm of cells, where many RNA viruses replicate. Scientists have devised a solution: Cas13d-NCS. This new molecular tool allows CRISPR RNA molecules that are located within the nucleus of a cell to move to the cytoplasm, making it highly effective at neutralizing RNA viruses. This advancement opens doors for precision medicine and proactive viral defense strategies.