Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Computer Science: Encryption
Published Study provides fresh insights into antibiotic resistance, fitness landscapes



A new study suggests that E. coli bacteria may have a higher capability to evolve antibiotic resistance than previously believed. Researchers mapped possible mutations in an essential E. coli protein involved in antibiotic resistance and found that 75% of evolutionary paths led to high antibiotic resistance, challenging existing theories about fitness landscapes in evolutionary biology. This discovery may have broader implications for understanding adaptation and evolution in various fields.
Published Nutrient found in beef and dairy improves immune response to cancer



Trans-vaccenic acid (TVA), a long-chain fatty acid found in meat and dairy products from grazing animals such as cows and sheep, improves the ability of CD8+ T cells to infiltrate tumors and kill cancer cells, according to a new study.
Published Team discovers rules for breaking into Pseudomonas



Researchers report that they have found a way to get antibacterial drugs through the nearly impenetrable outer membrane of Pseudomonas aeruginosa, a bacterium that -- once it infects a person -- is notoriously difficult to treat.
Published A stronger core for better plant breeding



A new software tool with enhanced genome-sequencing powers has been developed, increasing the speed and accuracy at which researchers can improve plants through breeding.
Published Tiny beads preserve enzymes for biocatalysis



Some enzymes, such as the one derived from fungi and investigated in this study, are able to produce valuable substances such as the fragrance (R)-1-phenylethanol. To this end, they convert a less expensive substrate using a co-substrate. A research team came up with the idea of supplying them with this co-substrate using a plasma -- a somewhat crazy idea, as plasmas generally have a destructive effect on biomolecules. However, by employing several tricks, the researchers did indeed succeed. They have now refined one of these tricks and thus improved the process: They attach the enzymes to tiny beads in order to hold them in place at the bottom of the reactor, where they are protected from the damaging effects of the plasma.
Published Laser-powered 'tweezers' reveal universal mechanism viruses use to package up DNA



Researchers have used laser-powered ‘optical tweezers’ to reveal a universal motor mechanism used by viruses for packaging their DNA into infectious particles.
Published Unearthing how a carnivorous fungus traps and digests worms



A new analysis sheds light on the molecular processes involved when a carnivorous species of fungus known as Arthrobotrys oligospora senses, traps and consumes a worm.
Published Coffee grounds may hold key to preventing neurodegenerative diseases



A team of researchers found that caffeic-acid based Carbon Quantum Dots (CACQDs), which can be derived from spent coffee grounds, have the potential to protect brain cells from the damage caused by several neurodegenerative diseases.
Published Researchers develop comprehensive genetic map for bison, discover gene responsible for albinism



Researchers have determined the gene mutation responsible for an observable trait in bison -- albinism.
Published Scientists have solved the damselfly color mystery



For over 20 years, a research team has studied the common bluetail damselfly. Females occur in three different color forms -- one with a male-like appearance, something that protects them from mating harassment. In a new study, an international research team found that this genetic color variation that is shared between several species arose through changes in a specific genomic region at least five million years ago.
Published Heart repair via neuroimmune crosstalk



Unlike humans, zebrafish can completely regenerate their hearts after injury. They owe this ability to the interaction between their nervous and immune systems, as researchers now report.
Published New method to help with analysis of single cell data



CITE-seq (cellular indexing of transcriptomes and epitopes) is an RNA sequencing-based method that simultaneously quantifies cell surface protein and transcriptomic data within a single cell readout. The ability to study cells concurrently offers unprecedented insights into new cell types, disease states or other conditions. While CITE-seq solves the problem of detecting a limited number of proteins while using single-cell sequencing in an unbiased way, one of its limitations is the high levels of background noise that can hinder analysis.
Published Rediscovery of rare marine amoeba Rhabdamoeba marina



Researchers have rediscovered and successfully cultivating Rhabdamoeba marina -- a rare marine amoeba that has only been reported in two cases in the past century. Using this culture strain, they performed a comprehensive analysis of its genetic sequence, revealing for the first time the phylogenetic position of this enigmatic amoeba, and proposed a novel taxonomic classification based on their research findings.
Published Genomic tug of war could boost cancer therapy



Researchers have discovered a 'genomic tug of war' in animal studies that could influence how well certain patients -- or certain cancers -- respond to decitabine, a drug used to treat myelodysplastic syndromes that is plagued by drug resistance issues. For the first time, researchers show that decitabine causes coding and non-coding regions of DNA to engage in a tug of war for a gene activator, called H2A.Z. Typically, deticabine draws this gene activator away from coding DNA, causing gene expression to grind to a halt and cells to die. However, many types of cancer have very high levels of H2A.Z, which may help them overcome this decitabine-induced tug of war, allowing the cancer to grow.
Published How cell identity is preserved when cells divide



A new theoretical model helps explain how epigenetic memories, encoded in chemical modifications of chromatin, are passed from generation to generation. Within each cell's nucleus, researchers suggest, the 3D folding patterns of its genome determines which parts of the genome will be marked by these chemical modifications.
Published Much more than waste: Tiny vesicles exchange genetic information between cells in the sea



Researchers take a look at data that has so far been mostly discarded as contamination, revealing the previously underestimated role of extracellular vesicles (EVs). These are important for the exchange of genetic information between cells and thus for the microbial community in the sea.
Published Hormones have the potential to treat liver fibrosis



Researchers have discovered previously unknown changes in a specific type of liver cells, potentially opening avenues for a new treatment for liver fibrosis, a potentially life-threatening condition. Currently, there are no drugs available to treat liver fibrosis.
Published How bacteria recognize viral invasion and activate immune defenses



Bacteria have an array of strategies to counter viral invasion, but how they first spot a stranger in their midst has long been a mystery.
Published Colliding ribosomes activate RNA repair



Researchers discover how ribosomes contribute to the recognition and removal of RNA crosslinking damage.
Published Unexpected discovery opens bioengineering opportunities for human and plant health



An unexpected genetic discovery in wheat has led to opportunities for metabolic engineering of versatile compounds with potential to improve its nutritional qualities and resilience to disease.