Showing 20 articles starting at article 621
< Previous 20 articles Next 20 articles >
Categories: Biology: Genetics, Computer Science: Encryption
Published Researchers solve protein mystery



Researchers have uncovered that proteins use a common chemical label as a shield to protect them from degradation, which in turn affects motility and aging.
Published Genetic methods enable the use of fossil lipids as biomarkers for oxygen-producing primordial bacteria



Cyanobacteria are a key species in Earth's history, as they introduced atmospheric oxygen for the first time. The analysis of their evolution therefore provides important insights into the formation of modern aerobic ecosystems. For a long time, a certain type of fossil lipid, so-called 2-methylhopanes, was considered to be an important biomarker for Cyanobacteria in sediments, some of which are hundreds of millions of years old. However, this came into doubt when it turned out that not only Cyanobacteria but also Alphaproteobacteria are genetically capable of producing these lipids.
Published Mammalian cells may consume bacteria-killing viruses to promote cellular health



Bacteriophages, also called phages, are viruses that infect and kill bacteria, their natural hosts. But from a macromolecular viewpoint, phages can be viewed as nutritionally enriched packets of nucleotides wrapped in an amino acid shell. A study suggests that mammalian cells internalize phages as a resource to promote cellular growth and survival.
Published Membrane transporter ensures mobility of sperm cells



Special proteins -- known as membrane transporters -- are key to the mobility of sperm cells. A research team has, with the aid of cryo-electron microscopy, succeeded in decoding the structure of such a transporter and its mechanism. These findings will enable a better understanding of the molecular foundations of reproductive capacity and could, in the long term, contribute to developing new approaches to treating fertility disorders and new methods of specific contraception.
Published Defect in fruit fly respiratory system may provide insights into human aortic aneurysms



A team of researchers has gained new insights into the respiratory system of fruit flies -- the so-called tracheal system -- which could be important for future research into aneurysms. Scientists carried out genetic, cell biological and biochemical studies on Drosophila embryos. They found that the cells in the fruit fly's tracheal system are connected to the extracellular matrix by the proteins Dumpy and Piopio.
Published Sunflower extract fights fungi to keep blueberries fresh



Opening a clamshell of berries and seeing them coated in fuzzy mold is a downer. And it's no small problem. Gray mold and other fungi, which cause fruit to rot, lead to significant economic losses and food waste. Now, researchers report that compounds from sunflower crop waste prevented rotting in blueberries. They suggest the food industry could use these natural compounds to protect against post-harvest diseases.
Published How eggs of the Zika-carrying mosquito survive desiccation



Eggs of the mosquito that carries Zika virus can tolerate extended desiccation by altering their metabolism, according to a new study. The finding offers potential new ways to control the spread of this mosquito.
Published Bacteria can enhance host insect's fertility with implications for disease control



New research reveals how the bacteria strain Wolbachia pipientis enhances the fertility of the insects it infects, an insight that could help scientists increase the populations of mosquitoes that do not carry human disease.
Published Finding the genes that help kingfishers dive without hurting their brains



Scientists studied the genomes of 30 kingfisher species to try to identify the genes that allow kingfishers to dive headfirst into water without huring their brains. The researchers found that the diving birds have unusual mutations to the genes that produce tau: a protein that helps stabilize tiny structures in the brain, but which can build up in humans with traumatic brain injuries or Alzheimer's disease. The researchers suspect that these variations in the kingfishers' tau proteins might protect their brains when they dive.
Published Study shows engineered gut bacteria can treat hypertension



Newly published research proves that it's possible to treat high blood pressure by using specially engineered Lactobacillus paracasei to produce a protein called ACE2 in the gut, reducing gut angiotensin II and, in turn, lowering blood pressure. The study, done in lab rats that are predisposed to hypertension and unable to naturally produce ACE2, opens new doors in the pursuit of harnessing our body's own microbiome to regulate blood pressure.
Published Plants transformed into detectors of dangerous chemicals



What if your house plant could tell you your water isn't safe? Scientists are closer to realizing this vision, having successfully engineered a plant to turn beet red in the presence of a banned, toxic pesticide.
Published Researchers develop DANGER analysis tool for the safer design of gene editing



A team of researchers has developed a software tool that provides a way for the safer design of genome editing in all organisms with a transcriptome. For about a decade, researchers have used the CRISPR technology for genome editing. However, there are some challenges in the use of CRISPR. The new analysis system overcomes these challenges and allows researchers to perform safer on- and off-target assessments without a reference genome. It holds the potential for applications in medicine, agriculture, and biological research.
Published Generating clean electricity with chicken feathers



Turning unused waste from food production into clean energy: Researchers are using chicken feathers to make fuel cells more cost-effective and sustainable.
Published Can golden retrievers live longer?



Researchers have found a gene associated with longevity in golden retrievers, one of the most popular breeds of dogs.
Published You say genome editing, I say natural mutation



A plant geneticist and computational biologist teamed up to decipher the unpredictability of natural and engineered mutations in tomatoes. They discovered some combinations of mutations behave as expected while others are more erratic. Their work may help scientists find some order in the chaos of evolution and genome editing.
Published Imprinted genes in the 'parenting hub' of the brain determine if mice are good parents



Whether a mouse is a good or bad parent can be traced back to imprinted genes in key neurons in the 'parenting hub' in the brain, according to a new study.
Published Physical theory improves protein folding prediction



Proteins are important molecules that perform a variety of functions essential to life. To function properly, many proteins must fold into specific structures. However, the way proteins fold into specific structures is still largely unknown. Researchers have developed a novel physical theory that can accurately predict how proteins fold. Their model can predict things previous models cannot. Improved knowledge of protein folding could offer huge benefits to medical research, as well as to various industrial processes.
Published Restoring the function of a human cell surface protein in yeast cells



Yeast cells are widely used to study G protein-coupled receptors (GPCRs), a large group of cell surface proteins in humans. However, several of these proteins lose their function when introduced into yeast cells. To tackle this issue, researchers developed an innovative strategy to restore GPCR function in yeast cells by inducing random mutations. Their findings can help understand GPCRs better and could pave the way to therapeutic breakthroughs for many diseases.
Published Stolen genes allow parasitic control of behavior



A research team has discovered that parasites manipulate their hosts using stolen genes that they likely acquired through a phenomenon called horizontal gene transfer.
Published Yeast speeds discovery of medicinal compounds in plants



Researchers have harnessed the power of baker's yeast to create a cost-effective and highly efficient approach for unraveling how plants synthesize medicinal compounds, and used the new method to identify key enzymes in a kratom tree.